Water Resource Optimal Allocation Based on Mathematical Model in Manas River Basin, China

2015 ◽  
Vol 12 (12) ◽  
pp. 6278-6281 ◽  
Author(s):  
G Yang ◽  
X. L He ◽  
J. F Li ◽  
C Wang ◽  
L. Q Xue ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xiangzheng Deng ◽  
Chunhong Zhao

In ecologically fragile areas with arid climate, such as the Heihe River Basin in northwestern China, sustainable social and economic development depends largely on the availability and sustainable uses of water resource. However, there is more and more serious water resource shortage and decrease of water productivity in Heihe River Basin under the influence of climate change and human activities. This paper attempts to identify the severe water scarcity under climate change and presents possible solutions for sustainable development in Heihe River Basin. Three problems that intervened land use changes, water resource, the relevant policies and institutions in Heihe River basin were identified, including (1) water scarcity along with serious contradiction between water supply and demand, (2) irrational water consumption structure along with low efficiency, and (3) deficient systems and institutions of water resource management along with unreasonable water allocation scheme. In this sense, we focused on reviewing the state of knowledge, institutions, and successful practices to cope with water scarcity at a regional extent. Possible solutions for dealing with water scarcity are explored and presented from three perspectives: (1) scientific researches needed by scientists, (2) management and institution formulation needed by governments, and (3) water resource optimal allocation by the manager at all administrative levels.


2021 ◽  
Vol 13 (1) ◽  
pp. 626-638
Author(s):  
Yage Wu ◽  
Guang Yang ◽  
Lijun Tian ◽  
Xinchen Gu ◽  
Xiaolong Li ◽  
...  

Abstract The Manas River Basin (MRB), Northwest China, is an arid basin dependent on irrigation for agriculture, and human activities are believed to be the primary factor affecting the groundwater level fluctuations in this basin. Such fluctuations can have a significant adverse impact on the social economy, agricultural development, and natural environment of that region. This raises concerns regarding the sustainability of groundwater use. In this study, we used ArcGIS spatial interpolation and contrast coefficient variance analysis to analyse groundwater level, land-use change, and water resource consumption patterns from 2012 to 2019 in the plains of the MRB. The aim was to determine the main factors influencing the groundwater level and to provide a scientific basis for the rational development, utilisation, and management of water resources in this area. During the study period, the groundwater level decreased, increased, and then fluctuated with a gradually slowing downward trend; the decline ranged from −17.82 to −11.67 m during 2012–2019. Within a given year, groundwater levels declined from March/April to August/September, then rose from August/September to March/April, within a range of 0.29–19.05 m. Primary factors influencing the groundwater level included human activities (e.g., changes in land use, river regulation, irrigation, and groundwater exploitation) and natural causes (e.g., climate and weather anomalies). Human activities were the primary factors affecting groundwater level, especially land-use change and water resource consumption. These results provide a theoretical basis for the rational exploitation of groundwater and the optimisation of water resource management in this region.


1982 ◽  
Vol 14 (4-5) ◽  
pp. 245-252 ◽  
Author(s):  
C S Sinnott ◽  
D G Jamieson

The combination of increasing nitrate concentrations in the River Thames and the recent EEC Directive on the acceptable level in potable water is posing a potential problem. In assessing the impact of nitrates on water-resource systems, extensive use has been made of time-series analysis and simulation. These techniques are being used to define the optimal mix of alternatives for overcoming the problem on a regional basis.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1446
Author(s):  
Min Wang ◽  
Xi Chen ◽  
Ayetiguli Sidike ◽  
Liangzhong Cao ◽  
Philippe DeMaeyer ◽  
...  

Water users in the Amudarya River Basin in Uzbekistan are suffering severe water use competition and uneven water allocation, which seriously threatens ecosystems, as shown, for example, in the well-known Aral Sea catastrophe. This study explores the optimized water allocation schemes in the study area at the provincial level under different incoming flow levels, based on the current water distribution quotas among riparian nations, which are usually ignored in related research. The optimization model of the inexact two-stage stochastic programming method is used, which is characterized by probability distributions and interval values. Results show that (1) water allocation is redistributed among five different sectors. Livestock, industrial, and municipality have the highest water allocation priority, and water competition mainly exists in the other two sectors of irrigation and ecology; (2) water allocation is redistributed among six different provinces, and allocated water only in Bukhara and Khorezm can satisfy the upper bound of water demand; (3) the ecological sector can receive a guaranteed water allocation of 8.237–12.354 km3; (4) under high incoming flow level, compared with the actual water distribution, the total allocated water of four sectors (except for ecology) is reduced by 3.706 km3 and total economic benefits are increased by USD 3.885B.


2022 ◽  
Vol 305 ◽  
pp. 114394
Author(s):  
Peng Yang ◽  
Shengqing Zhang ◽  
Jun Xia ◽  
Yaning Chen ◽  
Yongyong Zhang ◽  
...  

2008 ◽  
Vol 3 (3) ◽  
pp. 191 ◽  
Author(s):  
P. Rubino ◽  
M. Catalano ◽  
R. Rana ◽  
A. Caliandro

Sign in / Sign up

Export Citation Format

Share Document