MHD Squeezing Flow of Nanofluid Between Parallel Plates in the Presence of Aligned Magnetic Field

2016 ◽  
Vol 13 (11) ◽  
pp. 8700-8708 ◽  
Author(s):  
M. M Rashidi ◽  
M. Jayachandra Babu ◽  
N Sandeep ◽  
M. E Ali
2018 ◽  
Vol 384 ◽  
pp. 1-11 ◽  
Author(s):  
M. Satish Kumar ◽  
Naramgari Sandeep ◽  
B. Rushi Kumar ◽  
Salman Saleem

The two-dimensional unsteady magnetohydrodynamic squeezing flow and heat transfer of Casson fluid between two parallel plates with aligned magnetic field and nonlinear thermal radiation is investigated theoretically. The resulting governing equations are transformed as set of ODEs and solved numerically by using bvp4c Matlab package. The influence of various pertinent parameters on the flow and temperature fields are discussed with the assistance of graphical illustrations. The reduced Nusselt number are presented through graphs. It is seen that increasing values of squeeze number depreciate the flow and temperature fields.


2019 ◽  
Vol 3(2019) (1) ◽  
pp. 59-73 ◽  
Author(s):  
Gbeminiyi Sobamowo ◽  
◽  
Lawrence Jayesimi ◽  
David Oke ◽  
Ahmed Yinusa ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qingkai Zhao ◽  
Hang Xu ◽  
Longbin Tao

The time-dependent mixed bioconvection flow of an electrically conducting fluid between two infinite parallel plates in the presence of a magnetic field and a first-order chemical reaction is investigated. The fully coupled nonlinear systems describing the total mass, momentum, thermal energy, mass diffusion, and microorganisms equations are reduced to a set of ordinary differential equations via a set of new similarity transformations. The detailed analysis illustrating the influences of various physical parameters such as the magnetic, squeezing, and chemical reaction parameters and the Schmidt and Prandtl numbers on the distributions of temperature and microorganisms as well as the skin friction and the Nusselt number is presented. The conclusion is drawn that the flow field, temperature, and chemical reaction profiles are significantly influenced by magnetic parameter, heat generation/absorption parameter, and chemical parameter. Some examples of potential applications of such bioconvection could be found in pharmaceutical industry, microfluidic devices, microbial enhanced oil recovery, modeling oil, and gas-bearing sedimentary basins.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250051 ◽  
Author(s):  
O. ANWAR BÉG ◽  
M. M. RASHIDI ◽  
T. A. BÉG ◽  
M. ASADI

The transient squeezing flow of a magneto-micropolar biofluid in a noncompressible porous medium intercalated between two parallel plates in the presence of a uniform strength transverse magnetic field is investigated. The partial differential equations describing the two-dimensional flow regime are transformed into nondimensional, nonlinear coupled ordinary differential equations for linear and angular momentum (micro-inertia). These equations are solved using the robust Homotopy Analysis Method (HAM) and also numerical shooting quadrature. Excellent correlation is achieved. The influence of magnetic field parameter (Ha) , micropolar spin gradient viscosity parameter (Γ) and unsteadiness parameter (S) on linear and angular velocity (micro-rotation) are presented graphically, for specified values of the micropolar vortex viscosity parameter (R), Darcy number (Da i.e. permeability parameter) and medium porosity parameter (ε). Increasing magnetic field (Ha) serves to decelerate both the linear and angular velocity i.e. enhances lubrication. The excellent potential of HAM in bio-lubrication flows is highlighted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Iskandar Waini ◽  
Norihan Md Arifin ◽  
Ioan Pop

AbstractThe proficiency of hybrid nanofluid from Cu-Al2O3/water formation as the heat transfer coolant is numerically analyzed using the powerful and user-friendly interface bvp4c in the Matlab software. For that purpose, the Cu-Al2O3/water nanofluid flow between two parallel plates is examined where the lower plate can be deformed while the upper plate moves towards/away from the lower plate. Other considerable factors are the wall mass suction/injection and the magnetic field that applied on the lower plate. The reduced ordinary (similarity) differential equations are solved using the bvp4c application. The validation of this novel model is conducted by comparing a few of numerical values for the reduced case of viscous fluid. The results imply the potency of this heat transfer fluid which can enhance the heat transfer performance for both upper and lower plates approximately by 7.10% and 4.11%, respectively. An increase of squeezing parameter deteriorates the heat transfer coefficient by 4.28% (upper) and 5.35% (lower), accordingly. The rise of suction strength inflates the heat transfer at the lower plate while the presence of the magnetic field shows a reverse result.


2017 ◽  
Vol 29 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Naveed Ahmed ◽  
Umar Khan ◽  
Sheikh Irfanullah Khan ◽  
Saima Bano ◽  
Syed Tauseef Mohyud-Din

1999 ◽  
Vol 66 (4) ◽  
pp. 1021-1023 ◽  
Author(s):  
R. Usha ◽  
P. Vimala

In this paper, the magnetic effects on the Newtonian squeeze film between two circular parallel plates, containing a single central air bubble of cylindrical shape are theoretically investigated. A uniform magnetic field is applied perpendicular to the circular plates, which are in sinusoidal relative motion, and fluid film inertia effects are included in the analysis. Assuming an ideal gas under isothermal condition for an air bubble, a nonlinear differential equation for the bubble radius is obtained by approximating the momentum equation governing the magnetohydrodynamic squeeze film by the mean value averaged across the film thickness. Approximate analytical solutions for the air bubble radius, pressure distribution, and squeeze film force are determined by a perturbation method for small amplitude of sinusoidal motion and are compared with the numerical solution obtained by solving the nonlinear differential equation. The combined effects of air bubble, fluid film inertia, and magnetic field on the squeeze film force are analyzed.


Sign in / Sign up

Export Citation Format

Share Document