Chinese Remainder Theorem Based Key Management for Secured Data Transmission in Wireless Sensor Networks

2020 ◽  
Vol 17 (5) ◽  
pp. 2163-2171
Author(s):  
G. Manikandan ◽  
U. Sakthi

In secure communication key management plays an important role. Ensuring of security and trust worthiness in any transmission taking place via Wireless Sensor Networks (WSN) can be done using thoughtfully designed key management models. Here, the method of clustering is used to increase the system performance. Also, an effective key generation method is proposed for secured data transmission for the clustered wireless sensor networks. This method uses Chinese Remainder Theorem (CRT) for generating secret key for each cluster and merges with cluster head ID to generate a unique 144-bit encryption keys. Since, CRT uses random numbers for generating keys, separate active keys that are dynamic to ensure secured data transmission. The proposed model provides a positive impact by improving the lifetime, reducing the delay time, memory requirements and energy consumption, when compared with other existing state of art methods. Moreover, it protects data from brute-force attack, forward as well as backward secrecy and node compromised attack.

2020 ◽  
Vol 8 (5) ◽  
pp. 3847-4851

The use of Wireless Sensor Networks (WSN) in the field of military, battlefield, healthcare applications etc has seen a plethora of growth towards variety of sensory devices. Irrespective of different locations, the sensor nodes has to do its task. Hence, the dynamic wireless sensor networks should ensure better quality of sensor nodes that covers wider network area and additional services in relative to static WSNs systems. By doing so, it requires secure data communication among the sensor nodes in wireless environment. Key Management is the recent security concept enabled to provide secure communication between sender and receiver nodes. In this paper, we have proposed efficient key updates systems between the nodes. In any scenario, the nodes may join or leaves the network environment which facilitates to initiate a secret key between intended sender and intended receiver. A certificate less key secrecy system is designed for secure communication in wireless links. By designing so, we have addressed the issues like node authentication, data confidentiality and data integrity. Experimental analyses have shown the effectiveness of proposed system.


2013 ◽  
Vol 341-342 ◽  
pp. 1133-1137 ◽  
Author(s):  
Yong Lei Song ◽  
Shu Guo Cao

According to the existing problems in current key management strategy of wireless sensor networks, which have computation complexity, multi-memory space and inflexible management, this paper proposed a lightweight of cluster-based key management scheme for wireless sensor networks. Implementing the EBS(exclusive basis system) in the cluster heads communication, it could effectively enhance the ability of the resilience. Using Chinese remainder theorem in sensors communication, it will have less storage consumption, Lower communication and computational overhead. Under comparative analysis, it meets the needs of the WSNs key management and provides the better connectivity as well as the resilience compare to other key management schemes.


2012 ◽  
Vol 482-484 ◽  
pp. 252-255
Author(s):  
Xi Yuan Ma ◽  
Shu Mei Fan ◽  
Myong Soon Park

Wireless Sensor Networks (WSNs) are usually subjected to numerous threats and vulnerable to various attacks. Generally, the key management is considered to be the prerequisite for secure communication in WSNs. In this paper, we present a Localization-based Clustered Key Management (LCKM) which can efficiently enhance the network security and survivability for the clustered heterogeneous networks. LCKM utilizes the seeds to rekey and then localize the key materials, which protects the network from the compromised nodes by reducing the probability of the common key. The security analysis proves that LCKM can prevent more attacks than other protocols.


Wireless Sensor Networks consist of independent sensor nodes attached to one base station. In wireless sensor networks, nodes are connected to sensing environment and communicate the data to the base station. As WSNs continues to grow, they become vulnerable to attacks and hence the need for operative security techniques. Applications of wireless sensor networks demands for the well-organized and secure communication. For the solution of well-organized and reliable security, we need cryptography algorithms which provide good solutions. For providing reliable security techniques mainly data confidentiality, key management is used. Identification of suitable cryptographic techniques for WSNs is an important challenge due to limitation of energy, computation capability and memory of the sensor nodes. Symmetric cryptography techniques do not act well when the number of sensor nodes increases. Hence asymmetric key cryptographic techniques are widely used. Here we propose an electronic logic gate based symmetric Cryptographic technique which is more suitable for small and medium WSNs.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 594
Author(s):  
P. Balamurugan ◽  
M. Shyamala Devi ◽  
V. Sharmila

At present scenario, sensor devices are used in various fields for gathering information so all those data should be secured safely. Securing data is an important role in Wireless Sensor Networks (WSN). WSN is extremely essential for the purpose of reducing the complete redundancy and energy consumption during gathering data among sensor nodes. Optimized data aggregation is needed at cluster head and Base Station (BS) for secured data transmission. Data aggregation is performed in all routers while forwarding data from source to destination node. The complete life time of sensor networks is reducing because of using energy inefficient nodes for the purpose of aggregation. So this paper introduces the optimized methods for securing data (OMSD) which is trust based weights and also completely about the attacks and some methods for secured data transmission. 


2021 ◽  
pp. 2150009
Author(s):  
Monjul Saikia

The security of wireless sensor networks is a significant concern and can be achieved by the application of cryptographic algorithms. The symmetric key encryption techniques are widely used cryptographic mechanisms for the security of sensor networks due to its low computational complexity. A symmetric key encryption technique requires a secret key to be shared between both parties for confidential communication. In a wireless sensor network, it is difficult to know which node is going to be in its communication range at the deployment phase. If prior knowledge of sensor location exists, it is an added advantage and helps in the distribution of secret keys among nodes. Even if with the expected location information, distributing the keys properly among the nodes is a challenging task. A proper algorithm must be used so that it gives the adequate utilization of the distributed keys with a minimal number of keys per sensor node. In this paper, we propose a location-dependent key distribution scheme. We use Delaunay Triangulation for the efficient distribution of keys among sensor nodes. The method gives a high probability of secure communication links among nodes with high resilience to the network.


Sign in / Sign up

Export Citation Format

Share Document