Synthesis and Characterization of Polystyrene-Poly(arylene ether sulfone)-Polystyrene Triblock Copolymer for Proton Exchange Membrane Applications

2006 ◽  
Vol 6 (11) ◽  
pp. 3594-3598
Author(s):  
Jung-Eun Yang ◽  
Young Taik Hong ◽  
Jae-Suk Lee

The polystyrene-poly(arylene ether sulfone)-polystyrene (PS-PAES-PS) coil-semirod-coil triblock copolymer was synthesized by the condensation reaction of PS-COCl and H2N-PAES-NH2 telechelic polymers. The reaction was facile characterized by high yields with a perfect control over the block lengths. Following a known reaction protocol it was possible to selectively sulfonate the PS block of the triblock copolymer that led to the sulfonated copolymer sPS-PAES-sPS. Studies on its proton conductivity and methanol permeability were carried out to evaluate its use as the proton exchange membrane in direct methanol fuel cells. Proton conductivity of the membranes was increased depending on the sulfonic acid group content in the sulfonated polymer. The membranes exhibited good dimensional and thermal stability, and low methanol permeability compared to Nafion 117.

2016 ◽  
Vol 1 (1) ◽  
pp. 14
Author(s):  
Siti Wafiroh ◽  
Suyanto Suyanto ◽  
Yuliana Yuliana

AbstrakDi era globalisasi ini, kebutuhan bahan bakar fosil semakin meningkat dan ketersediannya semakin menipis. Oleh karena itu, dibutuhkan bahan bakar alternatif seperti Proton Exchange Membrane Fuel Cell (PEMFC). Tujuan dari penelitian ini adalah membuat dan mengkarakterisasi membran komposit kitosan-sodium alginat dari rumput laut coklat (Sargassum sp.) terfosforilasi sebagai Proton Exchange Membrane Fuel Cell (PEMFC). PEM dibuat dengan 4 variasi perbandingan konsentrasi antara kitosan dengan sodium alginat 8:0, 8:1, 8:2, dan 8:4 (b/b). Membran komposit kitosan-sodium alginat difosforilasi dengan STPP 2N. Karakterisasi PEM meliputi: uji tarik, swelling air, kapasitas penukar ion, FTIR, SEM, permeabilitas metanol, dan konduktivitas proton. Berdasarkan hasil analisis tersebut, membran yang optimal adalah perbandingan 8:1 (b/b) dengan nilai modulus young sebesar 0,0901 kN/cm2, swelling air sebesar 19,14 %, permeabilitas metanol sebesar 72,7 x 10-7, dan konduktivitas proton sebesar 4,7 x 10-5 S/cm. Membran komposit kitosan-sodium alginat terfosforilasi memiliki kemampuan yang cukup baik untuk bisa diaplikasikan sebagai membran polimer elektrolit dalam PEMFC. Kata kunci: kitosan, sodium alginat, terfosforilasi, PEMFC  AbstractIn this globalization era, the needs of fossil fuel certainly increases, but its providence decreases. Therefore, we need alternative fuels such as Proton Exchange Membrane Fuel Cell (PEMFC). The purpose of this study is preparationand characterization of phosphorylated chitosan-sodium alginate composite membrane from brown seaweed (Sargassum sp.) as Proton Exchange Membrane Fuel Cell (PEMFC). PEM is produced with 4 variations of concentration ratio between chitosan and sodium alginate 8:0, 8:1, 8:2, and 8:4 (w/w). Chitosan-sodium alginate composite membrane phosphorylated with 2 N STPP. The characterization of PEM include: tensile test, water swelling, ion exchange capacity, FTIR, SEM, methanol permeability, and proton conductivity. Based on the analysis result, the optimal membrane is ratio of 8:1 (w/w) with the value of Young’s modulus about 0.0901 kN/cm2, water swelling at 19.14%, methanol permeability about 72.7 x 10-7, and proton conductivity about 4.7 x 10-5 S/cm. The phosphorylated chitosan-sodium alginate composite membrane has good potentials for the application of the polymer electrolyte membrane in PEMFC. Keywords: chitosan, sodium alginate, phosphorylated, PEMFC


2021 ◽  
pp. 095400832110394
Author(s):  
Yan Ma ◽  
Kaixu Ren ◽  
Ziqiu Zeng ◽  
Mengna Feng ◽  
Yumin Huang

To improve the performances of sulfonated poly (arylene ether nitrile) (SPEN)–based proton exchange membranes (PEMs) in direct methanol fuel cells (DMFCs), the copper phthalocyanine grafted graphene oxide (CP-GO) was successfully prepared via in situ polymerization and subsequently incorporated into SPEN as filler to fabricate a series of SPEN/CP-GO-X (X represents for the mass ratio of CP-GO) composite membranes. The water absorption, swelling ratio, mechanical properties, proton conductivity, and methanol permeability of the membranes were systematically studied. CP-GO possesses good dispersion and compatibility with SPEN matrix, which is propitious to the formation of strong interfacial interactions with the SPEN, so as to provide more efficient transport channels for proton transfer in the composite membranes and significantly improve the proton conductivity of the membranes. Besides, the strong π–π conjugation interactions between CP-GO and SPEN matrix can make the composite membranes more compact, blocking the methanol transfer in the membranes, and significantly reducing the methanol permeability. Consequently, the SPEN/CP-GO-1 composite membrane displayed outstanding tensile strength (58 MPa at 100% RH and 25°C), excellent proton conductivity (0.178 S cm−1 at 60°C), and superior selectivity (5.552 × 105 S·cm−3·s). This study proposed a new method and strategy for the preparation of high performance PEMs.


2014 ◽  
Vol 577 ◽  
pp. 53-57
Author(s):  
Hang Wei ◽  
Guang Li

Sulfonated poly (arylene ether sulfone) s (SPAESs) exhibit good proton conductivity, thermal and mechanical properties, could act as candidates of proton exchange membranes for fuel cells. At the same time, the poor oxidative stability and excessive swelling ratio of SPAESs bring limitations for its further use. In this article, PAN was employed to mix with SPAES, and then SPAES/PAN blend membranes were prepared from the blend solution by casting. The water uptake, dimensional and oxidative stability, proton conductivity were measured with respect to the addition content of PAN, the phase morphology of the resultant SPAES/PAN were also observed by SEM. The results explained that the corporation of PAN into SPAES could reduce the water uptake and improve the oxidative stability of the obtained membranes compared with the pristine SPAES membrane. That the PAN phase distributed as separated domains in SPAES matrix was found, the interaction between SPAES and PAN may be present, which is responsible for the improvement of dimensional and oxidative stability. Although the proton conductivity of the blend membranes became reduced with increase of PAN content in the SPAES/PAN blend, the conductivity of 0.0265S/cm at 30°C could still be reached, satisfying the requirement for proton exchange membrane Fuel Cell


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1871 ◽  
Author(s):  
Ae Kim ◽  
Mohanraj Vinothkannan ◽  
Kyu Lee ◽  
Ji Chu ◽  
Sumg Ryu ◽  
...  

We designed and synthesized a series of sulfonated poly(arylene ether sulfone) (SPES) with different hydrophilic or hydrophobic oligomer ratios using poly-condensation strategy. Afterward, we fabricated the corresponding membranes via a solution-casting approach. We verified the SPES membrane chemical structure using nuclear magnetic resonance (1H NMR) and confirmed the resulting oligomer ratio. Field-emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) results revealed that we effectively attained phase separation of the SPES membrane along with an increased hydrophilic oligomer ratio. Thermal stability, glass transition temperature (Tg) and membrane elongation increased with the ratio of hydrophilic oligomers. SPES membranes with higher hydrophilic oligomer ratios exhibited superior water uptake, ion-exchange capacity, contact angle and water sorption, while retaining reasonable swelling degree. The proton conductivity results showed that SPES containing higher amounts of hydrophilic oligomers provided a 74.7 mS cm−1 proton conductivity at 90 °C, which is better than other SPES membranes, but slightly lower than that of Nafion-117 membrane. When integrating SPES membranes with proton-exchange membrane fuel cells (PEMFCs) at 60 °C and 80% relative humidity (RH), the PEMFC power density exhibited a similar increment-pattern like proton conductivity pattern.


2014 ◽  
Vol 11 (3) ◽  
Author(s):  
Vahid Mazinani ◽  
SeyedHadi Tabaian ◽  
Milad Rezaei ◽  
Mahdiyeh Mallahi ◽  
Mohsen Mohammadijoo ◽  
...  

Nafion-CaO, Nafion-ZrOH, and Nafion-CaO-ZrOH membranes are fabricated in order to improve proton conductivity, thermal stability, and mechanical properties as well as decrease methanol crossover in direct methanol fuel cells. The ion exchange method is utilized to incorporate Ca and Zr into Nafion membranes. Prepared membranes are characterized by using absorption transmission reflectance (ATR) and energy dispersive X-ray spectroscopy (EDS) techniques. Methanol crossover decreases significantly for all fabricated membranes. Nafion-CaO and Nafion-CaO-ZrOH membranes exhibit a 10 and 6 time increase in proton conductivity compared to Nafion (0.08 Scm–1), while the proton conductivity of Nafion-ZrOH decreases. The elastic modulus enhance from 48 MPa for Nafion to 60, 78, and 90 MPa for Nafion-CaO, Nafion-ZrOH, and Nafion-CaO-ZrOH membranes. In addition, the thermal stability of Nafion (360 °C) increases to 407, 457, and 470 °C for fabricated membranes.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Jean-Michel Thomassin ◽  
Christophe Pagnoulle ◽  
Didier Bizzari ◽  
Giuseppe Caldarella ◽  
Albert Germain ◽  
...  

Abstract Direct methanol fuel cells (DMFCs) using a proton exchange membrane as electrolyte is an attractive option for electricity generation. The most widely used membrane in the DMFC system is based on a perfluorinated polymer bearing sulfonic acid functions like Nafion ®. The latter combines chemical, mechanical and thermal stability and high protonic conductivity but shows elevated methanol permeability. We propose the preparation of a novel type of hybrid membranes to tentatively solve this problem. This innovative material results from the homogeneous dispersion of a nano-scaled inorganic filler within Nafion. The filler consists of stacks of negatively charged alumino-silicate layers (Cloisite), with a positive counter-ion in the interlamellar space. The purpose of the addition of this filler is to decrease methanol diffusion through the polymer membrane without decreasing too much the ionic conductivity.


2019 ◽  
Vol 4 (4) ◽  
pp. 901-911 ◽  
Author(s):  
Dinh Cong Tinh Vo ◽  
Minh Dat Thinh Nguyen ◽  
Dukjoon Kim

In the proton exchange membrane fuel cell, durability has recently been the critical issue in its operation.


Sign in / Sign up

Export Citation Format

Share Document