Physicochemical and Drug Delivery Aspects of Lipid-Based Liquid Crystalline Nanoparticles: A Case Study of Intravenously Administered Propofol

2006 ◽  
Vol 6 (9) ◽  
pp. 3017-3024 ◽  
Author(s):  
Markus Johnsson ◽  
Justas Barauskas ◽  
Andreas Norlin ◽  
Fredrik Tiberg

Liquid crystalline nanoparticles (LCNP) formed through lipid self-assembly have a range of attractive properties as in vivo drug delivery carriers. In particular they offer: a wide solubilization spectrum, and consequently high drug payloads; effective encapsulation; stabilization and protection of sensitive drug substances. Here we present basic physicochemical features of non-lamellar LCNP systems with a focus on intravenous drug applications. This is exemplified by the formulation properties and in vivo behavior using the drug substance propofol; a well-known anesthetic agent currently used in clinical practice in the form of a stable emulsion. In order to appraise the drug delivery features of the LCNP system the current study was carried out with a marketed propofol emulsion product as reference. In this comparison the propofol-LCNP formulation shows several useful features including: higher drug-loading capacity, lower fat-load, excellent stability, modified pharmacokinetics, and an indication of increased effect duration.

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4013
Author(s):  
Liroy Lugasi ◽  
Igor Grinberg ◽  
Rivka Sabag ◽  
Ravit Madar ◽  
Haim Einat ◽  
...  

Risperidone (RSP) is an atypical antipsychotic drug widely used to treat schizophrenia and bipolar disorder. Nanoparticles (NPs) are being developed as in vivo targeted drug delivery systems, which cross the blood-brain barrier and improve pharmacokinetics and drug effectiveness. Here, biodegradable proteinoids were synthesized by thermal step-growth polymerization from the amino acids l-glutamic acid, l-phenylalanine and l-histidine and poly (l-lactic acid). Proteinoid NPs containing RSP were then formed by self-assembly, overcoming the insolubility of the drug in water, followed by PEGylation (poly ethylene glycol (PEG) conjugation to increase the stability of the NPs in the aqueous continuous phase. These NPs are biodegradable owing to their peptide and ester moieties. They were characterized in terms of diameter, size distribution, drug loading, and long-term storage. Behavioral studies on mice found enhanced antipsychotic activity compared to free RSP.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 904
Author(s):  
Irin Tanaudommongkon ◽  
Asama Tanaudommongkon ◽  
Xiaowei Dong

Most antiretroviral medications for human immunodeficiency virus treatment and prevention require high levels of patient adherence, such that medications need to be administered daily without missing doses. Here, a long-acting subcutaneous injection of lopinavir (LPV) in combination with ritonavir (RTV) using in situ self-assembly nanoparticles (ISNPs) was developed to potentially overcome adherence barriers. The ISNP approach can improve the pharmacokinetic profiles of the drugs. The ISNPs were characterized in terms of particle size, drug entrapment efficiency, drug loading, in vitro release study, and in vivo pharmacokinetic study. LPV/RTV ISNPs were 167.8 nm in size, with a polydispersity index of less than 0.35. The entrapment efficiency was over 98% for both LPV and RTV, with drug loadings of 25% LPV and 6.3% RTV. A slow release rate of LPV was observed at about 20% on day 5, followed by a sustained release beyond 14 days. RTV released faster than LPV in the first 5 days and slower than LPV thereafter. LPV trough concentration remained above 160 ng/mL and RTV trough concentration was above 50 ng/mL after 6 days with one subcutaneous injection. Overall, the ISNP-based LPV/RTV injection showed sustained release profiles in both in vitro and in vivo studies.


2021 ◽  
Author(s):  
Wei Wen ◽  
Wangqi Ouyang ◽  
Song Guan ◽  
Aihua Chen

A facile synthesis of non-spherical photoresponsive azobenzene-containing liquid crystalline nanoparticles via polymerization-induced hierarchical self-assembly (PIHSA).


2017 ◽  
Vol 532 (1) ◽  
pp. 345-351 ◽  
Author(s):  
Andrew Otte ◽  
Yahira M. Báez-Santos ◽  
Ellina A. Mun ◽  
Bong-Kwan Soh ◽  
Young-nam Lee ◽  
...  

2021 ◽  
Vol 16 (7) ◽  
pp. 1029-1036
Author(s):  
Hongzhu Wang ◽  
Mengxun Chen ◽  
Liping Song ◽  
Youju Huang

A key challenge for nanoparticles-based drug delivery system is to achieve manageable drug release in tumour cell. In this study, a versatile system combining photothermal therapy and controllable drug release for tumour cells using temperature-sensitive block copolymer coupled Au NRs@SiO2 is reported. While the Au NRs serve as hyperthermal agent and the mesoporous silica was used to improve the drug loading and decrease biotoxicity. The block copolymer acted as “gatekeeper” to regulate the release of model drug (Doxorubicin hydrochloride, DOX). Through in vivo and in vitro experiments, we achieved the truly controllable drug release and photothermal therapy with the collaborative effect of the three constituents of the nanocomposites. The reported nanocomposites pave the way to high-performance controllable drug release and photothermal therapy system.


2019 ◽  
Vol 24 (7) ◽  
pp. 1405-1412 ◽  
Author(s):  
Thiagarajan Madheswaran ◽  
Murugesh Kandasamy ◽  
Rajendran JC Bose ◽  
Vengadeshprabhu Karuppagounder

2020 ◽  
Vol 8 (13) ◽  
pp. 2726-2737
Author(s):  
Cheng Xu ◽  
Jiaxi Xu ◽  
Yan Zheng ◽  
Qin Fang ◽  
Xiaodong Lv ◽  
...  

The mechanism of pluronic-based prodrug micelles self-assembly, drug delivery and anti-MDR in vivo.


2020 ◽  
Vol 6 (28) ◽  
pp. eaba5855 ◽  
Author(s):  
Veronika Magdanz ◽  
Islam S. M. Khalil ◽  
Juliane Simmchen ◽  
Guilherme P. Furtado ◽  
Sumit Mohanty ◽  
...  

We develop biohybrid magnetic microrobots by electrostatic self-assembly of nonmotile sperm cells and magnetic nanoparticles. Incorporating a biological entity into microrobots entails many functional advantages beyond shape templating, such as the facile uptake of chemotherapeutic agents to achieve targeted drug delivery. We present a single-step electrostatic self-assembly technique to fabricate IRONSperms, soft magnetic microswimmers that emulate the motion of motile sperm cells. Our experiments and theoretical predictions show that the swimming speed of IRONSperms exceeds 0.2 body length/s (6.8 ± 4.1 µm/s) at an actuation frequency of 8 Hz and precision angle of 45°. We demonstrate that the nanoparticle coating increases the acoustic impedance of the sperm cells and enables localization of clusters of IRONSperm using ultrasound feedback. We also confirm the biocompatibility and drug loading ability of these microrobots, and their promise as biocompatible, controllable, and detectable biohybrid tools for in vivo targeted therapy.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20956-20967 ◽  
Author(s):  
Qiaojuan Jia ◽  
Zhenzhen Li ◽  
Chuanpan Guo ◽  
Xiaoyu Huang ◽  
Yingpan Song ◽  
...  

A biocompatible γ-CD-MOF based DDS with high drug loading and full drug release was prepared and effective tumor growth inhibition was achieved in vivo.


Sign in / Sign up

Export Citation Format

Share Document