magnetic microrobots
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 32)

H-INDEX

19
(FIVE YEARS 6)

2022 ◽  
Vol 26 ◽  
pp. 101337
Author(s):  
Carmen C. Mayorga-Martinez ◽  
Jan Vyskočil ◽  
Filip Novotný ◽  
Petr Bednar ◽  
Daniel Ruzek ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1572
Author(s):  
Junyang Li ◽  
Lei Fan ◽  
Yanfang Li ◽  
Tanyong Wei ◽  
Cheng Wang ◽  
...  

Cell-carrying magnet-driven microrobots are easily affected by blood flow or body fluids during transportation in the body, and thus cells often fall off from the microrobots. To reduce the loss of loaded cells, we developed a microrobot with a bioactive nanostructured titanate surface (NTS), which enhances cell adhesion. The microrobot was fabricated using 3D laser lithography and coated with nickel for magnetic actuation. Then, the microrobot was coated with titanium for the external generation of an NTS through reactions in NaOH solution. Enhanced cell adhesion may be attributed to the changes in the surface wettability of the microrobot and in the morphology of the loaded cells. An experiment was performed on a microfluidic chip for the simulation of blood flow environment, and result revealed that the cells adhered closely to the microrobot with NTS and were not obviously affected by flow. The cell viability and protein absorption test and alkaline phosphatase activity assay indicated that NTS can provide a regulatory means for improving cell proliferation and early osteogenic differentiation. This research provided a novel microrobotic platform that can positively influence the behaviour of cells loaded on microrobots through surface nanotopography, thereby opening up a new route for microrobot cell delivery.


2021 ◽  
Vol 4 (1) ◽  
pp. 46
Author(s):  
Gungun Lin ◽  
Yuan Liu ◽  
Guan Huang ◽  
Yinghui Chen ◽  
Denys Makarov ◽  
...  

Magnetic microrobots with versatile mechanical motion will enable many ex- and in vivo applications. Unfortunately, monolithic integration of multiple functions in a streamlined microrobotic body is still challenging due to the compromise between fabrication throughput, device footprints, and material choices. In this talk, I will present a unified framework architecture for microrobotic functionalization to enable magnetically steered locomotion, chemical sensing and in vivo tracking. This has been achieved through stratifying stimuli-responsive nanoparticles in a hydrogelmicro-disk. We uncovered the key mechanism of leveraging spatially alternating magnetic energy potential to control a Euler’s disk-like microrobot to locomote swiftly on its sidewall. The results suggest great potential for microrobots to locomote while cooperating a wide range of functions, tailorable for universal application scenarios.


2021 ◽  
pp. 1-26
Author(s):  
Jiayin Xie ◽  
Chenghao Bi ◽  
David J. Cappelleri ◽  
Nilanjan Chakraborty

Abstract Design of robots at the small scale is a trial-and-error based process, which is costly and time-consuming. There are few dynamic simulation tools available to accurately predict the motion or performance of untethered microrobots as they move over a substrate. At smaller length scales, the influence of adhesion and friction, which scales with surface area, becomes more pronounced. Thus, rigid body dynamic simulators, which implicitly assume that contact between two bodies can be modeled as point contact are not suitable. In this paper, we present techniques for simulating the motion of microrobots where there can be intermittent and non-point contact between the robot and the substrate. We use these techniques to study the motion of tumbling microrobots of different shapes and select shapes that are optimal for improving locomotion performance. Simulation results are verified using experimental data on linear velocity, maximum climbable incline angle, and microrobot trajectory. Microrobots with improved geometry were fabricated, but limitations in the fabrication process resulted in unexpected manufacturing errors and material/size scale adjustments. The developed simulation model is able to incorporate these limitations and emulate their effect on the microrobot's motion, reproducing the experimental behavior of the tumbling microrobots, further showcasing the effectiveness of having such a dynamic model.


2021 ◽  
pp. 2003177
Author(s):  
Yingchun Su ◽  
Tian Qiu ◽  
Wen Song ◽  
Xiaojun Han ◽  
Mengmeng Sun ◽  
...  

2020 ◽  
pp. 2001096
Author(s):  
Jongeon Park ◽  
Jin‐young Kim ◽  
Salvador Pané ◽  
Bradley J. Nelson ◽  
Hongsoo Choi

Sign in / Sign up

Export Citation Format

Share Document