Equivalent Circuit Model of Semiconductor Nanowire Diode by SPICE

2007 ◽  
Vol 7 (11) ◽  
pp. 4089-4093 ◽  
Author(s):  
Sehan Lee ◽  
Yunseop Yu ◽  
Sungwoo Hwang ◽  
Doyeol Ahn

An equivalent circuit model of nanowire diodes is introduced. Because nanowire diodes inevitably involve a metal-semiconductor-metal structure, they consist of two metal-semiconductor contacts and one resistor in between these contacts. Our equivalent circuit consists of two Schottky diodes and one resistor. The current through the reverse-biased Schottky diode is calculated from the thermionic field emission (TFE) theory and that of the forward-biased Schottky diode is obtained from the classical thermionic emission (TE) equation. Our model is integrated into the conventional circuit simulator SPICE by a sub-circuit with TFE and TE routines. The results simulated with our model by SPICE are in good agreement with various, previously reported experimental results.

2007 ◽  
Vol 7 (11) ◽  
pp. 4089-4093
Author(s):  
Sehan Lee ◽  
Yunseop Yu ◽  
Sungwoo Hwang ◽  
Doyeol Ahn

An equivalent circuit model of nanowire diodes is introduced. Because nanowire diodes inevitably involve a metal-semiconductor-metal structure, they consist of two metal-semiconductor contacts and one resistor in between these contacts. Our equivalent circuit consists of two Schottky diodes and one resistor. The current through the reverse-biased Schottky diode is calculated from the thermionic field emission (TFE) theory and that of the forward-biased Schottky diode is obtained from the classical thermionic emission (TE) equation. Our model is integrated into the conventional circuit simulator SPICE by a sub-circuit with TFE and TE routines. The results simulated with our model by SPICE are in good agreement with various, previously reported experimental results.


Optik ◽  
2014 ◽  
Vol 125 (13) ◽  
pp. 3324-3327 ◽  
Author(s):  
Li Li ◽  
Yong Zhang ◽  
Wei Zhao ◽  
Shuang Liu ◽  
Ruimin Xu

2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1644
Author(s):  
Qian Zhang ◽  
Huijuan Liu ◽  
Tengfei Song ◽  
Zhenyang Zhang

A novel, improved equivalent circuit model of double-sided linear induction motors (DLIMs) is proposed, which takes the skin effect and the nonzero leakage reactance of the secondary, longitudinal, and transverse end effects into consideration. Firstly, the traditional equivalent circuit with longitudinal and transverse end effects are briefly reviewed. Additionally, the correction coefficients for longitudinal and transverse end effects derived by one-dimensional analysis models are given. Secondly, correction factors for skin effect, which reflects the inhomogeneous air gap magnetic field vertically, and the secondary leakage reactance are derived by the quasi-two-dimensional analysis model. Then, the proposed equivalent circuit is presented, and the excitation reactance and secondary resistance are modified by the correction coefficients derived from the three analytical models. Finally, a three-dimensional (3D) finite element model is used to verify the proposed equivalent circuit model under varying air gap width and frequency, and the results are also compared with that of the traditional equivalent circuit models. The calculated thrust characteristics by the proposed equivalent circuit and 3D finite element model are experimentally validated under a constant voltage–frequency drive.


2021 ◽  
Vol 31 (5) ◽  
pp. 1-5
Author(s):  
Chaemin Im ◽  
Geonyoung Kim ◽  
Jeseok Bang ◽  
Kibum Choi ◽  
Soobin An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document