Synthesis and Characterization of Carboxymethyl Chitosan Scaffolds Grafted with Waterborne Polyurethane

2020 ◽  
Vol 20 (8) ◽  
pp. 5014-5018 ◽  
Author(s):  
Sunmi Zo ◽  
Soonmo Choi ◽  
Hyunduk Kim ◽  
Eunjoo Shin ◽  
Sungsoo Han

Bone tissue engineering has been rapidly developed in regenerative medicine field, which aims to induce new functional bone regeneration through the synergistic combination of biomaterials and cells. Porous biomaterials with sufficient mechanical properties and functional impregnating for bone substitutes have been imposed in the oncoming generation of bone reconstruction. In this study, we fabricated Carboxymethyl chitosan three dimensional (3D) porous scaffold modified with waterborne polyurethane (WPU) through freeze drying technique. In order to check its potential in bone tissue substitutes, osteoblast cells (hFOB 1.19) were seeded onto the fabricated scaffolds and then, SEM and proliferation assay were performed. The enhanced proliferation was contributed to 3D macroporous network structure, large surface area, and osteoconductive environments.

2011 ◽  
Vol 493-494 ◽  
pp. 826-831
Author(s):  
A.C.B.M. Fook ◽  
Thiago Bizerra Fideles ◽  
R.C. Barbosa ◽  
G.T.F.S. Furtado ◽  
G.Y.H. Sampaio ◽  
...  

The application of a hybrid composite consisting of biopolymer and calcium phosphate, similar morphology and properties of natural bone, may be a way to solve the problem of the fragility of ceramics without reducing its mechanical properties, retaining the properties of biocompatibility and high bioactivity. This work aims at the preparation and characterization of three-dimensional scaffolds composite HA / biopolymers (chitosan and gelatin). The freeze-drying technique was employed in this study to obtain these frameworks and partial results showed the effectiveness of this method. This involved the study of structural, chemical and morphological frameworks, in order to direct the research suggested the application. The X Ray Diffraction (XRD) and infrared spectroscopy and Fourier transform (FTIR) results confirmed the formation of hydroxyapatite (HA) phase and the presence of characteristic bands of HA and biopolymers in all compositions. The microstructure of the scaffolds study conducted by Scanning Electron Microscopy (SEM) revealed the formation of longitudinally oriented microchannels with interconnected pores. In all compositions the porous scaffolds showed varying sizes and mostly larger than 100μm, and is therefore considered materials with potential for application in bone tissue engineering.


2013 ◽  
Vol 849 ◽  
pp. 151-156 ◽  
Author(s):  
Tarin Sukhachiradet ◽  
Wassanai Wattanutchariya

Autograft is a general method used in orthopedic surgery for a bone replacement. However, the disadvantage of this method is the amount of risk factor to the donor sites. Currently, bone tissue engineering is another technique that could be implemented to solve this problem. Artificial bone scaffold generated by bone tissue engineering can be employed in order to accelerate damaged bone regeneration. In fact, this scaffold can be fabricated from synthetic contents such as bioceramics, biopolymers or composite. Three types of biomaterials: Chitosan, Hydroxyapatite (HA) and Fibroin were used to form porous scaffold. This research investigated the preparation of Hydroxyapatite and Fibroin from natural materials. Hydroxyapatite was synthesized from mollusk shell by wet chemical precipitation method. While, Fibroin was extracted from silk worms cocoons. Freeze drying method was employed to fabricate this composite porous scaffold. A mixing ratio of 1:2:1 among Fibroin: Chitosan: HA was studied to evaluate biodegradability, biocompatibility, porosity and pore structure of the output scaffolds. Results show that the output scaffolds have an interconnected porous structure with a pore size around 150-200μm and an average porosity of 94.26%. While the average degradation rate of the scaffold in lysozyme was 10.46% at 7 days. In addition, the biocompatibility test based on XTT assay test, shown that the scaffolds were non-cytotoxicity, which could be good for bone filling application in the future.


2012 ◽  
Vol 476-478 ◽  
pp. 2055-2058 ◽  
Author(s):  
Zhi Hua Lu ◽  
Dong Mei Zhao ◽  
Kang Ning Sun

In this study, a genipin cross linked scaffold containing nano-hydroxyapatite (n-HAp) and carboxymehthyl chitosan (CMCS) was developed by freeze drying technique. The scaffolds were characterized using FTIR, XRD and SEM. The cytotoxicity of the scaffolds was compared with scaffolds cross linked by glutaraldehyde, and the Young’s modulus was also tested. FTIR and XRD results indicated that CMCS’s hydroxyl group, amino and amide regulated the n-HAp crystallization process, which results in the nano homogenous distribution of n-HAp and provided nano topographical features for nanohybrid scaffolds. SEM images revealed the scaffolds had porous structure and the pores were interconnected with an average diameter of 150 μm, which was profit for the growth of tissues. Cell morphology showed the genipin cross linked scaffolds had less toxicity and more facility for adhesion and proliferation of cells. Great mechanical properties of the scaffolds indicate their potential use in bone tissue engineering.


2014 ◽  
Vol 2 (38) ◽  
pp. 6611-6618 ◽  
Author(s):  
Jun Yang ◽  
Teng Long ◽  
Nan-Fei He ◽  
Ya-Ping Guo ◽  
Zhen-An Zhu ◽  
...  

A chitosan/bioglass three-dimensional porous scaffold with excellent biocompatibility and mechanical properties has been developed for the treatment of bone defects.


Sign in / Sign up

Export Citation Format

Share Document