Theoretical Study of Couple Stress Fluid Film in Rough Step Slider Bearing with Assorted Porous Structures

2018 ◽  
Vol 7 (1) ◽  
pp. 92-99 ◽  
Author(s):  
P. S. Rao ◽  
S. Agarwal
2015 ◽  
Vol 813-814 ◽  
pp. 921-937
Author(s):  
P.S. Rao ◽  
Santosh Agarwal

This paper presents the theoretical study and analyzes the comparison of porous structures on the performance of a couple stress fluid based on rough slider bearing. The globular sphere model of Kozeny-Carman and Irmay’s capillary fissures model have been subjected to investigations. A more general form of surface roughness is mathematically modeled by a stochastic random variable with non-zero mean, variance and skewness. The stochastically averaged Reynolds type equation has been solved under suitable boundary conditions to obtain the pressure distribution in turn which gives the expression for the load carrying capacity, frictional force and coefficient of friction. The results are illustrated by graphical representations which show that the introduction of combined porous structure with couple stress fluid results in an enhanced load carrying capacity more in the case of Kozeny-Carman model as compared to Irmay’s model.


2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1813-1824 ◽  
Author(s):  
Pentyala Rao ◽  
Birendra Murmu ◽  
Santosh Agarwal

This paper presents the theoretical analysis of comparison of porous structures on the performance of a slider bearing with surface roughness in micropolar fluid film lubrication. The globular sphere model and Irmay?s capillary fissures model have been subject to investigations. The general Reynolds equation which incorporates randomized roughness structure with Stokes micropolar fluid is solved with suitable boundary conditions to get the pressure distribution, which is then used to obtain the load carrying capacity. The graphical representations suggest that the globular sphere model scores over the Irmay?s capillary fissures model for an overall improved performance. The numerical computations of the results show that, the act of the porous structures on the performance of a slider bearing is improved for the micropolar lubricants as compared to the corresponding Newtonian lubricants.


2019 ◽  
Vol 8 (4) ◽  
pp. 4235-4240

After effects of studies led on a long porous partial journal bearing for couple stress fluid are thus displayed. Performance characteristics presently determined incorporate the time-height relationship, Fluid film force, Flow rate, frictional force alongside the coefficient of friction. Plan/Technique/Approach -The paper shows a solution for the squeeze film lubrication of a thick, porous, with couple stress fluid model. It is determined that the changed Reynolds condition inferred the fluid film pressures. The modified state of Reynolds equation is analytically solved and closed form expressions are shown for the time-height, the flow rate and friction force with frictional coefficient numerically with the given starting condition using MATLAB programming, the first non-linear equation in the time-height relationship is resolved. The effects on the squeeze film characteristics of couple stresses and permeability are discussed. Findings – It can be seen that the couple stress parameter enhances the bearing characteristics. The bearing performance can be improved with the increase of couple stress parameter ( l  ), eccentricity ratio (ϵ), permeability parameter (ψ). Additional study may be performed using the couple stress fluid model, including the magnetic effect with heat and mass transfer. This model can be used to compare further with other models such as micropolar fluid, rabinowitsch fluid and for comparative study, which models are the most suitable for improving bearing system performance.


10.1002/ls.67 ◽  
2009 ◽  
Vol 21 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Abdallah A. Elsharkawy ◽  
Sulaiman F. Alyaqout

Author(s):  
Satish C. Sharma ◽  
Nathi Ram

The lubricants are generally additized in order to enhance their lubricating properties. As a consequence of this, they exhibit nonlinear relationship between the shear stress and shear strain. One class of lubricants which has received considerable attention in recent years is the couple stress lubricants. The study of couple stress fluid flows has been the subject of increased interest owing to its widespread industrial and scientific applications such as synthetic fluids, polymer-thickened oils, liquid crystals and animal bloods. The present work is therefore aimed to study analytically the influence of couple stress lubricant on the performance of an orifice compensated non-recessed hole-entry hydrostatic/hybrid journal bearings. The modified Reynolds equation based on Stoke’s couple stress fluid theory has been solved by using the Finite Element Method. The numerically simulated results have been presented for various valves of couple stress parameters and external loads. The numerically simulated results reveal that the influence of couple stress lubricant increases the value of minimum fluid film thickness at constant value of external load for hybrid journal bearing vis-a-vis Newtonian lubricant. Further, it has been observed that the value of direct fluid film damping coefficient (C22) is larger for hydrostatic journal bearing lubricated with couple stress lubricant.


1990 ◽  
Vol 85 (1-2) ◽  
pp. 99-113 ◽  
Author(s):  
N. M. Bujurke ◽  
H. P. Patil ◽  
S. G. Bhavi

Sign in / Sign up

Export Citation Format

Share Document