A Comparison of Porous Structures on the Performance of a Slider Bearing with Surface Roughness in Couple Stress Fluid Film Lubrication

2015 ◽  
Vol 813-814 ◽  
pp. 921-937
Author(s):  
P.S. Rao ◽  
Santosh Agarwal

This paper presents the theoretical study and analyzes the comparison of porous structures on the performance of a couple stress fluid based on rough slider bearing. The globular sphere model of Kozeny-Carman and Irmay’s capillary fissures model have been subjected to investigations. A more general form of surface roughness is mathematically modeled by a stochastic random variable with non-zero mean, variance and skewness. The stochastically averaged Reynolds type equation has been solved under suitable boundary conditions to obtain the pressure distribution in turn which gives the expression for the load carrying capacity, frictional force and coefficient of friction. The results are illustrated by graphical representations which show that the introduction of combined porous structure with couple stress fluid results in an enhanced load carrying capacity more in the case of Kozeny-Carman model as compared to Irmay’s model.

Author(s):  
Mahdi Zare Mehrjardi

In this research, the steady state and dynamic performances of two-lobe noncircular journal bearings with couple stress lubricant are presented. The lubricating oil, containing additives and contaminants, is modeled as the couple stress fluid. The modified Reynolds equation is obtained using the couple stress lubrication theory and is then solved by finite element method as an efficient numerical technique. The steady-state characteristics of bearings, including the load carrying capacity and attitude angle, are determined for various values of the couple stress parameter. The results show that applying the couple stress fluid improves the efficiency of two-lobe bearings in terms of an increased load carrying capacity and reduced attitude angle. Also, the stability performance of the investigated bearings is studied using rotor motion equations based on linear and nonlinear dynamic methods. The results indicate that any increase in the lubricant couple stress parameter enhances the bearing ability to damp the rotor perturbations. In other words, by varying the lubricant from Newtonian oil to the couple stress type and upgrading its properties, the curves of the critical mass parameter and whirl frequency ratio have an increasing and decreasing trend, respectively. Based on the fourth-order Runge–Kutta method results, the dynamic trajectory of the rotor center in the bearing space changes with increasing the couple stress parameter from diverging disturbances and limits the cycle perturbations around the bearing center to converging oscillations to the static equilibrium point. Moreover, the effect of changing lubricant properties on the two-lobe bearing’s performance is more pronounced at higher values of the couple stress parameter, especially with an increase in the noncircularity of bearings’ geometry.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Neminath Bhujappa Naduvinamani ◽  
Siddangouda Apparao ◽  
Ayyappa G. Hiremath

Combined effects of surface roughness and viscosity-pressure dependency on the couple stress squeeze film characteristics of parallel circular plates are presented. On the basis of Christensen’s stochastic theory, two types of one-dimensional roughness structures, namely, the radial roughness and azimuthal roughness patterns, are considered and the stochastic modified Reynolds equation for these two types of roughness patterns is derived for Stokes couple stress fluid by taking into account variation of viscosity with pressure. The standard perturbation technique is employed to solve the averaged Reynolds equation and closed form expressions for the mean fluid film pressure, load carrying capacity, and squeeze film time are obtained. It is found that the effects of couple stresses and viscosity-pressure dependency are to increase the load carrying capacity, and squeeze film time for both types of roughness patterns. The effect of azimuthal (radial) roughness pattern is to increase (decrease) these squeeze film characteristics as compared to the corresponding smooth case.


Author(s):  
P. L. Thakkar ◽  
H. C. Patel

The effect of surface roughness on characteristics of magnetic fluid based squeeze film between porous circular plates is hypothetically analysed. The pressure distribution is obtained by solving concern Reynolds type equation with suitable boundary conditions and the result is utilized to obtain load carrying capacity. It is concluded that the load carrying capacity increases with increasing magnetization, while load carrying capacity decreases due to the standard deviation. It is observed that the negatively skewed roughness and negative mean increase the load carrying capacity. It is also observed that the magnetic fluid lubricant improves the performance of a bearing system, thereby, suggesting that the performance of the bearing with magnetic fluid lubricant is better than the conventional lubricant.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jimit R. Patel ◽  
G. M. Deheri

Efforts have been made to present a comparison of all the three magnetic fluid flow models (Neuringer-Rosensweig model, Shliomis model, and Jenkins model) so far as the performance of a magnetic fluid based parallel plate rough slider bearing is concerned. The stochastic model of Christensen and Tonder is adopted for the evaluation of effect of transverse surface roughness. The stochastically averaged Reynolds-type equation is solved with suitable boundary conditions to obtain the pressure distribution resulting in the calculation of load carrying capacity. The graphical results establish that for a bearing’s long life period the Shliomis model may be employed for higher loads. However, for lower to moderate loads, the Neuringer-Rosensweig model may be deployed.


2019 ◽  
Vol 71 (10) ◽  
pp. 1136-1143 ◽  
Author(s):  
Boualem Chetti ◽  
Wael Ahmed Crosby

Purpose The purpose of this paper is to present the effect of the preload on the static characteristics of three-lobe bearings lubricated with a fluid blended with high polymer additives modeled as a couple stress fluid. Design/methodology/approach Based on the micro-continuum theory, the modified Reynolds equation for couple stress fluids is solved using a finite difference method to obtain the distribution of the pressure, the load-carrying capacity, the attitude angle, the friction coefficient and the side leakage for various values of the couple stress parameter and the preload factor. Findings The results show that the presence of a couple stress in the lubricants improves the static characteristics of this type of bearing compared to those lubricated with Newtonian fluids for any value of the preload factor. Thus, it is found that the preload significantly affects the performance of the three-lobe journal bearing lubricated with a couple stress fluid or a Newtonian fluid. Moreover, the investigation showed that increasing the preload factor exhibits an increase in the load carrying capacity and the attitude angle, but it decreases the friction coefficient and the side leakage especially at a lower preload factor. Furthermore, using a couple stress fluid and a higher preload factor led to a significant rise in the load carrying capacity and a significant reduction in the friction coefficient. Practical implications This study helped improve the performance characteristics of the three-lobe journal bearing. Originality/value The presence of couple stress in the lubricants improves the static characteristics of this type of bearing compared to those lubricated with Newtonian fluids for any value of the preload factor. The usage of the couple stress fluid and the higher preload factor led to a significant rise in the load carrying capacity and a significant reduction in the friction coefficient.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Vimala Ponnuswamy ◽  
Sumathi Govindaraj

The problem of couple stress squeeze films considering viscosity pressure dependence (VPD) has been analysed in a curved circular geometry. Using Stokes microcontinuum theory and the Barus formula, the Reynolds type equation has been derived. The approximate analytical expressions for the squeeze film pressure and load carrying capacity are obtained using a perturbation technique. The numerical solutions for the squeeze film pressure and load carrying capacity are presented for the sinusoidal motion of the upper curved disk, assuming an exponential form for the curvature. The effects of curvature, the non-Newtonian couple stresses, and VPD and their combined effects are investigated through the squeeze film pressure and the load carrying capacity of the squeeze film.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
M. Rajashekar ◽  
Biradar Kashinath

The combined effects of couple stress and surface roughness on the MHD squeeze-film lubrication between a sphere and a porous plane surface are analyzed, based upon the thin-film magnetohydrodynamic (MHD) theory. Using Stoke’s theory to account for the couple stresses due to the microstructure additives and the Christensen’s stochastic method developed for hydrodynamic lubrication of rough surfaces derives the stochastic MHD Reynolds-type equation. The expressions for the mean MHD squeeze-film pressure, mean load-carrying capacity, and mean squeeze-film time are obtained. The results indicate that the couple stress fluid in the film region enhances the mean MHD squeeze-film pressure, load-carrying capacity, and squeeze-film time. The effect of roughness parameter is to increase (decrease) the load-carrying capacity and lengthen the response time for azimuthal (radial) roughness patterns as compared to the smooth case. Also, the effect of porous parameter is to decrease the load-carrying capacity and increase the squeeze-film time as compared to the solid case.


Author(s):  
Daniel Müller ◽  
Jens Stahl ◽  
Anian Nürnberger ◽  
Roland Golle ◽  
Thomas Tobie ◽  
...  

AbstractThe manufacturing of case-hardened gears usually consists of several complex and expensive steps to ensure high load carrying capacity. The load carrying capacity for the main fatigue failure modes pitting and tooth root breakage can be increased significantly by increasing the near surface compressive residual stresses. In earlier publications, different shear cutting techniques, the near-net-shape-blanking processes (NNSBP’s), were investigated regarding a favorable residual stress state. The influence of the process parameters on the amount of clean cut, surface roughness, hardness and residual stresses was investigated. Furthermore, fatigue bending tests were carried out using C-shaped specimens. This paper reports about involute gears that are manufactured by fineblanking. This NNSBP was identified as suitable based on the previous research, because it led to a high amount of clean cut and favorable residual stresses. For the fineblanked gears of S355MC (1.0976), the die edge radii were varied and the effects on the cut surface geometry, hardness distribution, surface roughness and residual stresses are investigated. The accuracy of blanking the gear geometry is measured, and the tooth root bending strength is determined in a pulsating test rig according to standardized testing methods. It is shown that it is possible to manufacture gears by fineblanking with a high precision comparable to gear hobbing. Additionally, the cut surface properties lead to an increased tooth root bending strength.


Author(s):  
Vivek Kumar ◽  
Satish C Sharma

Surface roughness is inherent to all machining processes. Therefore, even a high precision machining process renders micro-roughness to some extent on the surface of conventional materials. The asperities height of many rough engineering surfaces follows Gaussian distribution. The surface roughness on the bearing surface may significantly affect the bearing performance. Surface texturing is emerging as a new technique to improve the tribological behavior of the mating surfaces. Usually dimensions/height of micro-roughness is of order of the depth of surface textures in fluid film bearings. Neglecting micro-roughness while numerically simulating a textured surface bearing may generate inaccurate bearing performance data. In presented work, finite element simulation of textured surface hybrid thrust bearings has been performed. Surface texture is provided over thrust pad in the form of regular arrays of elliptical dimples. A parametric optimization is carried out to determine optimum attributes of elliptical dimple (axis, depth, texture length and orientation) so that the load-carrying capacity and fluid film stiffness should be maximized and film frictional power losses should be minimized. Use of textured surface (with optimum elliptical dimple attributes) results into a significant enhancement in load-carrying capacity (91.3%), film stiffness coefficient (+98.8%) and reduction in frictional power losses (−48.3%). It is also observed that elliptical dimple and micro-roughness (transverse orientation) generate synergistic effects in further enhancing the load-carrying capacity (+101.4%) and film stiffness coefficient (+112%) of the bearing.


Sign in / Sign up

Export Citation Format

Share Document