Geometrical Scaling for the Measurement of In-Vivo Human Inner Ear

2012 ◽  
Vol 10 (5) ◽  
pp. 1247-1251
Author(s):  
Jen-Fang Yu ◽  
Kun-Che Lee ◽  
Wei-Chung Chin
2013 ◽  
Vol 284-287 ◽  
pp. 1552-1558
Author(s):  
Jen Fang Yu ◽  
Kun Che Lee

This research aims to characterize the geometry of the human cochlear spiral in vivo by measuring curvature and length. Magnetic resonance imaging (MRI) was used to visualise the human inner ear in vivo. The inner ear was imaged in 12 ears in 7 subjects recruited. Visualisation of the cochlear spiral was enhanced by T2 weighting and further processing of the raw images. The spirals were divided into 3 segments: the basal turn segment, the middle turn segment and the apex turn segment. The length and curvature of each segment were measured. The measured lengths of cochlear spiral are consistent with data in the literature derived from anatomical dissections. Overall, the apex turn segment of the cochlear had the greatest degree of curvature. A detailed description of the cochlear spiral is provided, using measurements of curvature and length. This data will provide a valuable reference in the development of cochlear implantation procedures.


2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P103-P103
Author(s):  
Jen-Fang Yu ◽  
Wei-Chung Chin ◽  
Che-Ming Wu ◽  
Shu-Hang Ng

Problem To non-invasively measure in-vivo human inner ear by MRI and measure the geometry of vestibule by the reconstructed 3D model of inner ear for further diagnosis of large vestibular aqueduct syndrome (LVAS). Methods 3-T MR scanner, MAGNETOM Trio made by Siemens, was utilized. The TR/TE for MR imaging of 7 patients was 5.65/2.6 ms and the voxel size was 0.5 mm X 0.5 mm X 0.5 mm for single slice of 48 slices. The configuration of semicircular canals, vestibule and cochlea could be detected by threshold. The 3D geometry of inner ear was then computed based on the thickness of slice. Results The surface area and volume of semicircular canals for 7 normal ears were 217.85 square mm and 63.56 cubic mm; of vestibule were 105.88 square mm and 56.36 cubic mm; of cochlea were 171.84 square mm and 81.29 cubic mm respectively. The variation of volumes of vestibule and cochlea could be quantified non-invasively. The correlation between the volume and the level of LVAS will be analyzed once the number of volunteer reaches a statistically significant level. Conclusion The variation for the geometry of vestibule could be measured non-invasively. The grade of LVAS can be assessed by the obtained 3D model of semi-circular canal, vestibule and cochlea. Significance According to the 3D model, the geometry of inner ear can be measured, and the syndrome can be revealed directly to help clinical diagnosis of LVAS more accurately.


2019 ◽  
Author(s):  
Seyed-Ahmad Ahmadi ◽  
Theresa Raiser ◽  
Ria Maxine Rühl ◽  
Virginia L. Flanagin ◽  
Peter zu Eulenburg

AbstractBrain atlases and templates are core tools in scientific research with increasing importance also in clinical applications. Advances in neuroimaging now allowed us to expand the atlas domain to the vestibular and auditory organ, the inner ear. In this study, we present IE-Map, an in-vivo template and atlas of all known substructures of the human labyrinth derived from multi-modal high-resolution magnetic resonance imaging data in a non-invasive manner (no contrast agent or radiation). We reconstructed a common template from 126 inner ears (63 normal subjects) and annotated it with 94 established landmarks and semi-automatic segmentations. Quantitative substructure analysis revealed a correlation of labyrinth parameters with total intracranial volume. No effects of gender or laterality were found. We provide the validated templates, atlas segmentations, surface meshes and landmark annotations as open-access material, to provide neuroscience researchers and clinicians in neurology, neurosurgery, and otorhinolaryngology with a widely applicable tool for computational neurootology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed-Ahmad Ahmadi ◽  
Theresa Marie Raiser ◽  
Ria Maxine Rühl ◽  
Virginia Lee Flanagin ◽  
Peter zu Eulenburg

AbstractBrain atlases and templates are core tools in scientific research with increasing importance also in clinical applications. Advances in neuroimaging now allowed us to expand the atlas domain to the vestibular and auditory organ, the inner ear. In this study, we present IE-Map, an in-vivo template and atlas of the human labyrinth derived from multi-modal high-resolution magnetic resonance imaging (MRI) data, in a fully non-invasive manner without any contrast agent or radiation. We reconstructed a common template from 126 inner ears (63 normal subjects) and annotated it with 94 established landmarks and semi-automatic segmentations of all relevant macroscopic vestibular and auditory substructures. We validated the atlas by comparing MRI templates to a novel CT/micro-CT atlas, which we reconstructed from 21 publicly available post-mortem images of the bony labyrinth. Templates in MRI and micro-CT have a high overlap, and several key anatomical measures of the bony labyrinth in IE-Map are in line with micro-CT literature of the inner ear. A quantitative substructural analysis based on the new template, revealed a correlation of labyrinth parameters with total intracranial volume. No effects of gender or laterality were found. We provide the validated templates, atlas segmentations, surface meshes and landmark annotations as open-access material, to provide neuroscience researchers and clinicians in neurology, neurosurgery, and otorhinolaryngology with a widely applicable tool for computational neuro-otology.


2020 ◽  
Vol 53 (2) ◽  
pp. 16424-16429
Author(s):  
Milka C.I. Madahana ◽  
Otis T.C. Nyandoro ◽  
John E.D. Ekoru

1979 ◽  
Vol 88 (3) ◽  
pp. 424-426 ◽  
Author(s):  
Larry E. Davis ◽  
Charles G. James ◽  
Frederick Fiber ◽  
Leroy C. McLaren

Cytomegalovirus (CMV) infection of the fetus has been associated with congenital deafness or hearing loss. This association has previously been based on clinical or pathological studies. We report an infant who died with the congenital CMV syndrome in which CMV was isolated from the perilymph of the inner ear providing additional evidence that this virus can infect the labyrinth.


2021 ◽  
Author(s):  
Daniel R. Romano ◽  
Eri Hashino ◽  
Rick F. Nelson

AbstractSensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.


Sign in / Sign up

Export Citation Format

Share Document