scholarly journals LOW SPATIAL FREQUENCY SUPPRESSION DURING VERTICAL SACCADIC EYE MOVEMENTS

2015 ◽  
Vol 15 (12) ◽  
pp. 598
Author(s):  
Abhishek Mandal ◽  
Niall Strang ◽  
Velitchko Manahilov
Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 162-162 ◽  
Author(s):  
R Groner ◽  
A von Mühlenen ◽  
M Groner

An experiment was conducted to examine the influence of luminance, contrast, and spatial frequency content on saccadic eye movements. 112 pictures of natural textures from Brodatz were low-pass filtered (0.04 – 0.76 cycles deg−1) and high-pass filtered (1.91 – 19.56 cycles deg−1) and varied in luminance (low and high) and contrast (low and high), resulting in eight images per texture. Circular clippings of the central parts of the images (approximately 15% of the whole image) were used as stimuli. In the condition of bottom - up processing, the eight stimuli derived from one texture were presented for 1500 ms in a circular arrangement around the fixation cross. They were followed by a briefly presented target stimulus in the centre, which in half the trials was identical to one of the eight test stimuli. Participants had to decide whether the target stimulus was identical to any of the preceding stimuli. During a trial, their eye movements were recorded by means of a Dual-Purkinje-Image eye tracker. In the top - down condition, the target stimulus was presented in each trial prior to the display of the test stimulus. It was assumed that the priming with a target produced a top - down processing of the test stimuli. The latency and landing site of the first saccade were computed and compared between the top - down and bottom - up conditions. It is hypothesised that stimulus characteristics (luminance, contrast, and spatial frequency) play a more prominent role in bottom - up processing, while top - down processing is adjusted to the particular characteristics of the prime.


2013 ◽  
Author(s):  
Sara Spotorno ◽  
Guillaume S. Masson ◽  
Anna Montagnini

2000 ◽  
Vol 132 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Christian Quaia ◽  
Martin Paré ◽  
Robert H. Wurtz ◽  
Lance M. Optican

Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Chong-Bin Tsai ◽  
Wei-Yu Hung ◽  
Wei-Yen Hsu

Optokinetic nystagmus (OKN) is an involuntary eye movement induced by motion of a large proportion of the visual field. It consists of a “slow phase (SP)” with eye movements in the same direction as the movement of the pattern and a “fast phase (FP)” with saccadic eye movements in the opposite direction. Study of OKN can reveal valuable information in ophthalmology, neurology and psychology. However, the current commercially available high-resolution and research-grade eye tracker is usually expensive. Methods & Results: We developed a novel fast and effective system combined with a low-cost eye tracking device to accurately quantitatively measure OKN eye movement. Conclusions: The experimental results indicate that the proposed method achieves fast and promising results in comparisons with several traditional approaches.


Author(s):  
Christian Wolf ◽  
Markus Lappe

AbstractHumans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.


2021 ◽  
Author(s):  
Federico Carbone ◽  
Philipp Ellmerer ◽  
Marcel Ritter ◽  
Sabine Spielberger ◽  
Philipp Mahlknecht ◽  
...  

2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


Sign in / Sign up

Export Citation Format

Share Document