scholarly journals Object-based Attention Underlies the Storage of Event Files in Working Memory

2017 ◽  
Vol 17 (10) ◽  
pp. 865
Author(s):  
Xiqian Lu ◽  
Yangfan Zhao ◽  
Rende Shui ◽  
Mowei Shen ◽  
Zaifeng Gao
2019 ◽  
Vol 72 (9) ◽  
pp. 2225-2239 ◽  
Author(s):  
Xiqian Lu ◽  
Xiaochi Ma ◽  
Yangfan Zhao ◽  
Zaifeng Gao ◽  
Mowei Shen

Retaining events containing action-related information in working memory (WM) is vital to daily activities such as action planning and social interaction. During processing of such events, action-related information is bound with other visual elements (e.g., colours) as event files. In this study, we explored whether retaining event files in WM consumes more attention than retaining the constituent elements. Considering that object-based attention underlies the rehearsal of static feature bindings in WM, we hypothesised that object-based attention played a key role in retaining event files in WM. As biological motion (BM) is one of the most frequently observed events in daily life, we employed BM-related event files as the tested stimuli. In separate blocks, we required participants to memorise BM, colours (or locations), or the binding between these elements (i.e., event files). Critically, we added an object-feature report task, which consumed object-based attention, during the WM maintenance phase. We predicted that the added secondary task would lead to larger impairment for BM event files than for the constituent elements. In line with this prediction, Experiments 1 and 2 consistently revealed a selective impairment to BM event files, which could not be attributed to an unbalanced number of elements between memory conditions (Experiment 3), or to the visual processing of a secondary task (Experiment 4). Taken together, these results suggest that object-based attention plays a pivotal role in maintaining event files in WM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaoxiong Ye ◽  
Qianru Xu ◽  
Xinyang Liu ◽  
Piia Astikainen ◽  
Yongjie Zhu ◽  
...  

AbstractPrevious studies have associated visual working memory (VWM) capacity with the use of internal attention. Retrocues, which direct internal attention to a particular object or feature dimension, can improve VWM performance (i.e., retrocue benefit, RCB). However, so far, no study has investigated the relationship between VWM capacity and the magnitudes of RCBs obtained from object-based and dimension-based retrocues. The present study explored individual differences in the magnitudes of object- and dimension-based RCBs and their relationships with VWM capacity. Participants completed a VWM capacity measurement, an object-based cue task, and a dimension-based cue task. We confirmed that both object- and dimension-based retrocues could improve VWM performance. We also found a significant positive correlation between the magnitudes of object- and dimension-based RCB indexes, suggesting a partly overlapping mechanism between the use of object- and dimension-based retrocues. However, our results provided no evidence for a correlation between VWM capacity and the magnitudes of the object- or dimension-based RCBs. Although inadequate attention control is usually assumed to be associated with VWM capacity, the results suggest that the internal attention mechanism for using retrocues in VWM retention is independent of VWM capacity.


2016 ◽  
Vol 79 (2) ◽  
pp. 533-552 ◽  
Author(s):  
Zaifeng Gao ◽  
Fan Wu ◽  
Fangfang Qiu ◽  
Kaifeng He ◽  
Yue Yang ◽  
...  
Keyword(s):  

2019 ◽  
Vol 30 (4) ◽  
pp. 526-540 ◽  
Author(s):  
Nicole Hakim ◽  
Kirsten C. S. Adam ◽  
Eren Gunseli ◽  
Edward Awh ◽  
Edward K. Vogel

Complex cognition relies on both on-line representations in working memory (WM), said to reside in the focus of attention, and passive off-line representations of related information. Here, we dissected the focus of attention by showing that distinct neural signals index the on-line storage of objects and sustained spatial attention. We recorded electroencephalogram (EEG) activity during two tasks that employed identical stimulus displays but varied the relative demands for object storage and spatial attention. We found distinct delay-period signatures for an attention task (which required only spatial attention) and a WM task (which invoked both spatial attention and object storage). Although both tasks required active maintenance of spatial information, only the WM task elicited robust contralateral delay activity that was sensitive to mnemonic load. Thus, we argue that the focus of attention is maintained via a collaboration between distinct processes for covert spatial orienting and object-based storage.


Author(s):  
Yin-ting Lin ◽  
Garry Kong ◽  
Daryl Fougnie

AbstractAttentional mechanisms in perception can operate over locations, features, or objects. However, people direct attention not only towards information in the external world, but also to information maintained in working memory. To what extent do perception and memory draw on similar selection properties? Here we examined whether principles of object-based attention can also hold true in visual working memory. Experiment 1 examined whether object structure guides selection independently of spatial distance. In a memory updating task, participants encoded two rectangular bars with colored ends before updating two colors during maintenance. Memory updates were faster for two equidistant colors on the same object than on different objects. Experiment 2 examined whether selection of a single object feature spreads to other features within the same object. Participants memorized two sequentially presented Gabors, and a retro-cue indicated which object and feature dimension (color or orientation) would be most relevant to the memory test. We found stronger effects of object selection than feature selection: accuracy was higher for the uncued feature in the same object than the cued feature in the other object. Together these findings demonstrate effects of object-based attention on visual working memory, at least when object-based representations are encouraged, and suggest shared attentional mechanisms across perception and memory.


2015 ◽  
Vol 15 (12) ◽  
pp. 537
Author(s):  
Mowei Shen ◽  
Xiqian Lu ◽  
Xiang Huang ◽  
Shulin Chen ◽  
Jifan Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document