scholarly journals Clearance and early hydrolysis of atrial natriuretic factor in vivo. Structural analysis of cleavage sites and design of an analogue that inhibits hormone cleavage.

1988 ◽  
Vol 81 (5) ◽  
pp. 1348-1354 ◽  
Author(s):  
C L Condra ◽  
E A Leidy ◽  
P Bunting ◽  
C D Colton ◽  
R F Nutt ◽  
...  
1986 ◽  
Vol 6 (9) ◽  
pp. 835-844 ◽  
Author(s):  
Nabil G. Seidah ◽  
James A. Cromlish ◽  
Josée Hamelin ◽  
Gaétan Thibault ◽  
Michel Chrétien

IRCM-Serine Protease 1 (IRCM-SP1) has recently been isolated and characterized from porcine pituitary anterior and neurointermediate lobes (Cromlish et al., 1986a, J. Biol. Chem.261:10850–10858; Cromlish et al., 1986b, J. Biol. Chem.261:10859–10870). This pituitary serine protease was shown to selectively cleave human proopiomelanocortin (POMC)-derived peptides at both pairs of basic residues and C-terminal to specific Arg residues, all known to be cleaved in vivo. Here, a similar enzyme was isolated from rat heart atria and ventricles. Rat IRCM-SP1 was shown to be highly specific for the same cleavage sites in POMC, as the porcine pituitary homologue. Furthermore, the rat and the porcine enzymes cleave rat pro-Atrial Natriuretic Factor (pro-ANF 1–126) to yield ANF 103–126, 102–126 and 99–126 in that order of preference. This suggests that in vitro the cleavage sites preferred in pro-ANF resemble those found in brain and hypothalamus. The enzyme is nine times more abundant in atria versus ventricles/mg protein. It is concluded that IRCM-SP1, could well represent a common pro-hormone maturation enzyme for POMC and Pro-ANF and possibly many other pro-hormones.


1989 ◽  
Vol 256 (2) ◽  
pp. G436-G441 ◽  
Author(s):  
C. Bianchi ◽  
G. Thibault ◽  
A. De Lean ◽  
J. Genest ◽  
M. Cantin

We have studied the localization and the characterization of atrial natriuretic factor (ANF) binding sites by radioautographic techniques. Quantitative in vitro radioautography with a computerized microdensitometer demonstrated the presence of high-affinity, low-capacity 125I-ANF-(99-126) binding sites (Kd, 48 pM; Bmax, 63 fmol/mg protein) mainly in the villi of 20-microns slide-mounted transverse sections of the rat jejunum. Competition curves showed 50% inhibitory concentrations of 55 and 1,560 pM for ANF-(99-126) and ANF-(103-123), respectively. In vivo electron microscope radioautography showed that 80% of the silver grains were localized on the lamina propria fibroblast-like cells, 18% on mature enterocytes, and 2% on capillaries. Bradykinin and adrenocorticotropin did not compete with ANF binding. These results demonstrate that ANF binding sites in the rat jejunum possess the pharmacological characteristics of functional ANF receptors encountered in other rat tissues, and ultrastructural radioautographs show their cellular distribution. Taken together, these results demonstrate the presence and the localization of specific binding sites for ANF in the jejunal villi of the rat small intestine.


1988 ◽  
Vol 254 (5) ◽  
pp. R809-R814 ◽  
Author(s):  
A. T. Veress ◽  
S. Milojevic ◽  
C. Yip ◽  
T. G. Flynn ◽  
H. Sonnenberg

Secretion of atrial natriuretic factor (ANF) in vivo is thought to be mediated by atrial distension. We have shown previously that nonstretched atria can release natriuretic activity in vitro when stimulated by certain agonists. In the present study atrial appendages from freshly excised rat hearts were incubated at 37 degrees C for up to 1 h in the presence of either vasopressin (5 X 10(-9) mol/l) or angiotensin II (2.5 X 10(-7) mol/l). Aliquots of postincubation media were injected intravenously into anesthetized bioassay rats to determine natriuretic activity. Control media, in which atria had been incubated without agonist, did not cause natriuresis. Significant increases in sodium excretion were seen after injection of media in which atria had been incubated in the presence of either agonist. Injection of medium with the same agonist concentration did not result in comparable natriuresis. Radioimmunoassay (RIA) indicated a high concentration of immunoactive ANF in the natriuretic media. However, radioreceptor assay (RRA) of the same media gave apparent ANF concentrations that were lower by about three orders of magnitude. Because the antibody used in the RIA cross reacts with ANF prohormone, whereas the RRA is sensitive only to the active form, we concluded that agonist-induced, stretch-independent release of ANF is in the form of prohormone, which can be converted to the active hormone in the circulation of the bioassay animal. The conclusion of prohormone release was confirmed by liquid chromatography. The data thus suggest that receptor-mediated as well as stretch-induced ANF secretion may be important in regulating the activity of the ANF system.


1986 ◽  
Vol 240 (2) ◽  
pp. 461-469 ◽  
Author(s):  
K K Murthy ◽  
G Thibault ◽  
R Garcia ◽  
J Gutkowska ◽  
J Genest ◽  
...  

The biologically active circulating form of atrial natriuretic factor (ANF) in the rat is the 28-amino-acid peptide ANF-(Ser-99-Tyr-126). Degradation of this peptide in vivo as well as in vitro, in whole blood, in plasma and by the isolated mesenteric artery was investigated. Studies in vivo in the rat demonstrated that the elimination and degradation of ANF was extremely fast: within 3 min more than 95% of the injected immunoreactive material was eliminated from circulation. The production of a short C-terminal peptide was detected on injection of 125I-ANF-(Ser-99-Tyr-126) into the rat. This peptide increased proportionately with incubation time. Experiments in vitro in the presence of whole blood or plasma did not cause any major destruction of ANF even after incubation for 60 min. After this prolonged incubation in plasma, ANF-(Ser-99-Tyr-126) was partially converted into ANF-(Ser-103-Tyr-126), a less potent peptide. Isolated mesenteric-artery preparation appeared to degrade ANF in a manner very similar to the system in vivo. These results suggest that degradation of ANF may occur either after internalization in the vascular cells or by a membrane-bound enzyme in the vasculature.


1989 ◽  
Vol 67 (9) ◽  
pp. 1124-1129 ◽  
Author(s):  
Johanne Tremblay ◽  
Pavel Hamet

Since atrial natriuretic factor (ANF) is a natriuretic and vasodilatory hormone, its mechanisms of action expectedly involve so-called negative pathways of cell stimulation, notably cyclic nucleotides. Indeed, the guanylate cyclase–cyclic GMP (cGMP) system appears to be the principal mediator of ANF's action. Specifically, particulate guanylate cyclase, a membrane glycoprotein, transmits ANF's effects, as opposed to the activation of soluble guanylate cyclase by such agents as sodium nitroprusside. The stimulation of particulate guanylate cyclase by ANF manifests several characteristics. One of them is the functional irreversibility of stimulation with its apparent physiological consequences: the extended impact of ANF on diuresis and vasodilation in vivo lasts beyond the duration of increased plasma ANF levels and is accompanied by a prolonged elevation of cGMP. Another characteristic is the parallelism between guanylate cyclase stimulation and increases of cGMP in extracellular fluids. cGMP egression appears to be an active process, yet its physiological implications remain to be uncovered. In heart failure, cGMP continues to reflect augmented ANF levels, suggesting that in this disease, the lack of an ANF effect on sodium excretion is due to a defect distal to cGMP generation. In hypertension, where ANF levels are either normal or slightly elevated, probably secondary to high blood pressure, the ANF responsiveness of the particulate guanylate cyclase–cGMP system, the hypotensive effects, diuresis and natriuresis are exaggerated. The implications of this exaggerated responsiveness of the ANF–cGMP system in the pathophysiology of hypertension and its potential therapeutic connotations remain to be evaluated.Key words: ANF, cGMP, guanylate cyclase, hypertension, heart failure.


1993 ◽  
Vol 237 (2-3) ◽  
pp. 265-273 ◽  
Author(s):  
Jean-François Arnal ◽  
Abdel-Ilah El Amrani ◽  
Jean-Baptiste Michel

1988 ◽  
Vol 250 (3) ◽  
pp. 665-670 ◽  
Author(s):  
K K Murthy ◽  
G Thibault ◽  
M Cantin

Atrial natriuretic factor-(Asn1-Tyr126)-peptide, the 13.6 kDa propeptide of atrial natriuretic factor (ANF), is stored in the secretory granules of atrial cardiocytes. ANF-(Ser99-Tyr126)-peptide, the 28-amino-acid species, is the circulating form of this hormone in the rat. As the site of maturation of the prohormone is still unknown, the present study was undertaken to understand the contribution of the circulation to the maturation process of pro-ANF. 125I-ANF-(Asn1-Tyr126)-peptide was incubated with whole rat blood, plasma or serum for different time intervals, and the products were analysed. There was minimal activation of the propeptide in either whole blood or plasma. Incubation with serum, however, resulted in the formation of an 11 kDa and a 3 kDa peptide which corresponded respectively to the N-terminal and C-terminal parts of the propeptide. These results suggest that hydrolysis of the propeptide in serum is brought about by enzymes that may be stimulated during coagulation but which may not play a major role in the activation of pro-ANF in the circulation. Plasma analysis at different time intervals after prohormone injection indicated a non-specific hydrolysis of the pro-ANF molecule. The disappearance rate curves, obtained with radiolabelled pro-ANF, suggested the presence of two components with half-lives of 2.1 +/- 0.4 min and 52.5 +/- 8.4 min respectively. A metabolic clearance rate of 1.49 +/- 0.22 ml/min and an initial distribution volume of 47.4 +/- 8 ml were calculated. These results indicate that the maturation of pro-ANF to its active circulating form takes place before it is released into the circulation.


2003 ◽  
Vol 285 (5) ◽  
pp. G929-G937 ◽  
Author(s):  
María E. Sabbatini ◽  
Alberto Villagra ◽  
Carlos A. Davio ◽  
Marcelo S. Vatta ◽  
Belisario E. Fernández ◽  
...  

Increasing evidence supports the role of atrial natriuretic factor (ANF) in the modulation of gastrointestinal physiology. The effect of ANF on exocrine pancreatic secretion and the possible receptors and pathways involved were studied in vivo. Anesthetized rats were prepared with pancreatic duct cannulation, pyloric ligation, and bile diversion into the duodenum. ANF dose-dependently increased pancreatic secretion of fluid and proteins and enhanced secretin and CCK-evoked response. ANF decreased chloride secretion and increased the pH of the pancreatic juice. Neither cholinergic nor adrenergic blockade affected ANF-stimulated pancreatic secretion. Furthermore, ANF response was not mediated by the release of nitric oxide. ANF-evoked protein secretion was not inhibited by truncal vagotomy, atropine, or Nω-nitro-l-arginine methyl ester administration. The selective natriuretic peptide receptor-C (NPR-C) receptor agonist cANP-(4–23) mimicked ANF response in a dose-dependent fashion. When the intracellular signaling coupled to NPR-C receptors was investigated in isolated pancreatic acini, results showed that ANF did not modify basal or forskolin-evoked cAMP formation, but it dose-dependently enhanced phosphoinositide hydrolysis, which was blocked by the selective PLC inhibitor U-73122. ANF stimulated exocrine pancreatic secretion in the rat, and its effect was not mediated by nitric oxide or parasympathetic or sympathetic activity. Furthermore, CCK and secretin appear not to be involved in ANF response. Present findings support that ANF exerts a stimulatory effect on pancreatic exocrine secretion mediated by NPR-C receptors coupled to the phosphoinositide pathway.


Sign in / Sign up

Export Citation Format

Share Document