scholarly journals The role of cerebral amyloid   accumulation in common forms of Alzheimer disease

2005 ◽  
Vol 115 (5) ◽  
pp. 1121-1129 ◽  
Author(s):  
S. Gandy
Stroke ◽  
2021 ◽  
Author(s):  
Lukas Sveikata ◽  
Andreas Charidimou ◽  
Anand Viswanathan

We review the implications of the recently approved aducanumab amyloid-β immunotherapy for treating Alzheimer disease with comorbid cerebral amyloid angiopathy. In clinical trials, amyloid-β immunotherapy has been associated with a high rate of amyloid-related imaging abnormalities, potentially driven by coexisting cerebral amyloid angiopathy. Therefore, immunotherapy’s efficacy in patients may be modified by coexisting cerebrovascular pathology. We discuss the contributions of cerebral amyloid angiopathy on the development of amyloid-related imaging abnormalities and propose strategies to identify cerebral amyloid angiopathy in patients considered for immunotherapy.


Author(s):  
DN Voronkov ◽  
AV Stavrovskaya ◽  
AS Gushchina ◽  
AS Olshansky

It is assumed that dysfunction of tanycytes could be one of the components of pathogenesis of both Alzheimer disease and type 2 diabetes mellitus. The study was aimed to assess alterations in the tanycyte morphology in the Alzheimer disease model. The 3 mg/kg streptozotocin dose was injected in the lateral ventricles of Wistar rats in order to model the Alzheimer disease. Alterations in hypothalamic tanycytes were assessed 2 weeks, 4 weeks, 3 months and 6 months after administration of the toxin. Immunohistochemistry was used to identify the protein markers of tanycytes (vimentin, nestin), astrocytes (GFAP, glutamine synthetase) and neurons (HuC/D), as well as to assess cell proliferation (with the use of Ki67 protein) and mitochondrial alterations (mitochondrial complex IV, PGC1a). Administration of streptozotocin lead to β-amyloid accumulation in hypothalamus and ventricular enlargement (p < 0.001). Streptozotocin damaged both α1/α2 tanycytes and β1 tanycytes. The intensity of vimentin staining in α1/α2 tanycytes decreased by week 4 (p = 0.003), and in β1 tanycytes it decreased in three months (p < 0.001). The same trend was observed for nestin. The number of Ki67+ nuclei decreased (p < 0.05), and the expression of proteins associated with mitochondria changed. The density of hypothalamic tanycytes decreased by week 4 after administration of the toxin. Moreover, astrocyte activation was revealed. However, no prominent damage to both astrocytes and neurons was observed within four weeks after administration of streptozotocin. The revealed high tanycyte vulnerability to streptozotocin is in line with the hypothesis of the role of damage to hypothalamic structures in both local and systemic metabolic disorders occurring in the Alzheimer disease models.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


2019 ◽  
Vol 79 (7) ◽  
pp. 716-737 ◽  
Author(s):  
María Carmona‐Iragui ◽  
Laura Videla ◽  
Alberto Lleó ◽  
Juan Fortea

2012 ◽  
Vol 71 (8) ◽  
pp. 750-759 ◽  
Author(s):  
Akihiko Hoshi ◽  
Teiji Yamamoto ◽  
Keiko Shimizu ◽  
Yoshikazu Ugawa ◽  
Masatoyo Nishizawa ◽  
...  

2005 ◽  
Vol 64 (2) ◽  
pp. 104-112 ◽  
Author(s):  
Carl W. Cotman ◽  
Wayne W. Poon ◽  
Robert A. Rissman ◽  
Mathew Blurton-Jones

Sign in / Sign up

Export Citation Format

Share Document