scholarly journals Molecular regulation of HDL metabolism and function: implications for novel therapies

2006 ◽  
Vol 116 (12) ◽  
pp. 3090-3100 ◽  
Author(s):  
Daniel J. Rader
2019 ◽  
Vol 110 ◽  
pp. 24-39 ◽  
Author(s):  
Taylor T. Chrisikos ◽  
Yifan Zhou ◽  
Natalie Slone ◽  
Rachel Babcock ◽  
Stephanie S. Watowich ◽  
...  

2017 ◽  
Vol 233 (2) ◽  
pp. R95-R107 ◽  
Author(s):  
Nicholaos I Papachristou ◽  
Harry C Blair ◽  
Kyriakos E Kypreos ◽  
Dionysios J Papachristou

It is well appreciated that high-density lipoprotein (HDL) and bone physiology and pathology are tightly linked. Studies, primarily in mouse models, have shown that dysfunctional and/or disturbed HDL can affect bone mass through many different ways. Specifically, reduced HDL levels have been associated with the development of an inflammatory microenvironment that affects the differentiation and function of osteoblasts. In addition, perturbation in metabolic pathways of HDL favors adipoblastic differentiation and restrains osteoblastic differentiation through, among others, the modification of specific bone-related chemokines and signaling cascades. Increased bone marrow adiposity also deteriorates bone osteoblastic function and thus bone synthesis, leading to reduced bone mass. In this review, we present the current knowledge and the future directions with regard to the HDL–bone mass connection. Unraveling the molecular phenomena that underline this connection will promote the deeper understanding of the pathophysiology of bone-related pathologies, such as osteoporosis or bone metastasis, and pave the way toward the development of novel and more effective therapies against these conditions.


Alcohol ◽  
1999 ◽  
Vol 19 (3) ◽  
pp. 239-247 ◽  
Author(s):  
M.R Lakshman ◽  
Manjunath N Rao ◽  
Philippe Marmillot

Sign in / Sign up

Export Citation Format

Share Document