scholarly journals Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model

2007 ◽  
Vol 117 (4) ◽  
pp. 953-960 ◽  
Author(s):  
Christophe Dubois ◽  
Laurence Panicot-Dubois ◽  
Justin F. Gainor ◽  
Barbara C. Furie ◽  
Bruce Furie
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3512-3512
Author(s):  
Minh Hua ◽  
Leonardo Pasalic ◽  
Robert Lindeman ◽  
Philip Hogg ◽  
Vivien M Chen

Abstract Strong agonist stimulation generates a platelet subpopulation characterized by phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and high fibrinogen retention. This population is proposed to be procoagulant, dependent on formation of the mitochondrial permeability transition pore (mPTP) with a distinct role from activated aggregratory platelets. These platelets have features of necrosis. The functional relevance of necrotic platelets in vivo is unknown due to lack of a suitable marker for these platelets. We show that a novel small molecule cellular necrosis marker, GSAO1, labels a procoagulant platelet subpopulation with features of necrosis and use it to explore the functional role of these platelets. We demonstrated using flow cytometry analysis of washed human platelets that fluorescently tagged GSAO labels a subpopulation of P-selectin positive platelets after thrombin and collagen stimulation with features of necrosis: high annexin V binding, calcein loss and dependence on exogenous calcium. This population is not dependent on the intrinsic apoptosis pathway as there was no change with pancaspase inhibition using ZVADFMK prior to dual agonist stimulation (p=0.567, n=5). In contrast, inhibition of mPTP formation through cyclophilin-D inhibition with cyclosporine A significantly inhibited GSAO+ve platelet generation (p<0.001, n=5), confirming dependence on the mitochondrial necrosis pathway. Mass spectrometry analysis of biotin-GSAO labelled proteins from platelets after streptavidin pull down identified thromboxane A synthase (TBXAS-1) as the major binding ligand after dual stimulation. Binding to TBXAS-1 was abrogated by dithiol alkylation, showing the mechanism of retention of GSAO in necrotic platelets is via covalent cross linking of closely-spaced cysteine thiols in the ligand. This allows persistent signal from the probe within the necrotic platelet with no evidence of washout. GSAO+ve platelets correlated with procoagulant potential as measured by peak and endogenous thrombin potential in the calibrated automated thrombogram (CAT) assay. Linear regression analysis showed a significant relationship between % change in GSAO+ve platelets and % change in peak thrombin after treatment with cyclosporine A or in absence of exogenous calcium (R2=0.648, p<0.01), indicating that GSAO identifies a procoagulant subpopulation. In contrast, no relationship was seen between P-selectin and peak thrombin values (R2=0.002). Inhibition of platelet activation by aspirin had no effect on the generation of GSAO+ve platelets indicating a potential uncoupling between platelet activation and necrosis pathways. After establishing that the imaging compound does not affect platelet function and coagulation in vitro, or thrombus formation in vivo, we went on to investigate the presence of GSAO+ve necrotic platelets in thrombus formation in a collagen dependent (ferric chloride) and collagen independent (laser injury) murine model of thrombosis. Confocal intravital imaging of the cremaster arterioles with fluorescent GSAO and tagged-CD42b demonstrated GSAO+ve platelets in the occlusive platelet aggregate after initiation with 10% ferric chloride. The GSAO+ve aggregating platelets specifically colabeled with calcium sensing dye rhodamine 2 indicating high sustained intracellular calcium, consistent with a necrotic phenotype. There was no signal with active site replaced control GSCA. In contrast, the laser injury model showed minimal staining with GSAO three minutes post laser injury. Using a novel platelet necrosis marker, we are able to demonstrate that necrotic platelets are procoagulant and present in the occlusive ferric chloride model and not in the non-occlusive laser injury model of thrombosis. This suggests excess platelet necrosis may be a key driving factor underlying pathological occlusive thrombi. GSAO is a promising tool for understanding factors that potentiate platelet necrosis which may offer attractive anti-thrombotic targets. 1. Park D, Don AS, Massamiri T, et al. Noninvasive imaging of cell death using an hsp90 ligand. J Am Chem Soc. 2011;133(9):2832-2835. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3526-3526 ◽  
Author(s):  
Laurence Panicot-Dubois ◽  
Christophe Dubois ◽  
Barbara C. Furie ◽  
Bruce Furie ◽  
Dominique Lombardo

Abstract Bile Salt Dependent Lipase (BSDL) is an enzyme secreted by pancreatic acinar cells. BSDL, in the presence of primary bile salts, participates in the hydrolysis of dietary lipid esters in the duodenum lumen. This 105 kDa N and O-glycosylated protein has been detected in the plasma of normal subjects. Recent in vitro and in vivo studies demonstrated that pancreatic BSDL reaches the blood via transcytosis through enterocytes. Other studies showed that pancreatic human BSDL is captured by human umbilical vein endothelial cells and induces the proliferation of smooth muscle cells in vitro at BSDL concentrations found in blood, suggesting that this enzyme may play a role in hemostasis and thrombosis. However the specific role of circulating BSDL is unknown. The goal of this study was to determine the possible involvement of circulating BSDL in thrombus formation. We investigated the participation of circulating mouse BSDL in thrombus formation using widefield intravital microscopy in the cremaster muscle of living mice. Thrombi were formed following laser injury of the vessel wall of an arteriole in the cremaster muscle. Pancreatic mouse BSDL, a 74 kDa glycoprotein, was detected using several antibodies directed against either the whole human BSDL (pAbL64, pAbL32) or a peptide based on a sequence in the N-terminal domain of BSDL (Ser326-Thr350; pAbAntipeptide). Mouse and human BSDL share about 80% sequence homology, the main difference localized in the C-terminal domain, which is truncated to the mouse BSDL compared with the human enzyme. All the antibodies are able to specifically recognize the mouse pancreatic BSDL. Using antibodies pAbL64, pAbL32, or pAbAntipeptide we observed specific accumulation of circulating mouse BSDL into the growing thrombus. The circulating BSDL co-localized with platelets present in the thrombus. These results suggest that circulating BSDL is involved in thrombus formation in vivo. In order to determine if BSDL plays a role in platelet activation and aggregation, we performed in vitro studies on human washed platelets. BSDL increased both the amount of phosphatidylserine exposure on the surface of platelets and the activation of αIIbβ3 induced by thrombin. These results indicate that this enzyme can amplify the activation of platelets in vitro. While BSDL alone cannot induce the aggregation of platelets, this enzyme significantly increases the amount of platelet aggregation induced by SFLLRN peptide or thrombin. Altogether, these data suggeste that circulating BSDL participates in the thrombus formation after laser injury of the arterial wall and can amplify both the activation of platelets and the phosphatidylserine exposure, increasing the thrombotic response after vessel injury. This mechanism may be operative in the development of venous thromboembolic disease in pancreatic cancer.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 691-691 ◽  
Author(s):  
Reema Jasuja ◽  
Jaehyung Cho ◽  
Bruce Furie ◽  
Barbara Furie

Abstract We have previously reported that protein disulfide isomerase is required in wild-type mice for platelet thrombus formation and fibrin generation in an in vivo laser injury model of thrombosis (Cho et al. J. Clin. Invest., 2008; 118:1123–31). Fibrin deposition after laser injury to the vessel wall in Par4−/− mice, lacking the G protein-coupled platelet thrombin receptor, is independent of platelets or requires minimal platelet activation or accumulation (Vandendries et al. Proc. Natl. Acad. Sci., 2007; 104:288–92). However, protein disulfide isomerase inhibitors have a dramatic effect on fibrin accumulation in Par4− mice, suggesting that these inhibitors may function by a platelet independent mechanism. Here, we compare the contributions of endothelium and platelet-derived protein disulfide isomerase to fibrin generation in the mouse laser injury model of thrombosis. In vitro studies using cultured human umbilical vein endothelial cells and human aortic endothelial cells show that protein disulfide isomerase can be secreted rapidly into the culture medium from these cells upon thrombin stimulation. Using intravital microscopy, we observe that protein disulfide isomerase is not detectable on the vessel wall prior to laser injury but can be detected on the injured cremaster arteriolar wall and in the developing thrombus very rapidly after laser induced injury in the live mouse. The median integrated fluorescence intensity for protein disulfide isomerase in wild-type mice was compared to wild-type mice injected with 10ug/g mouse of Integrilin, an inhibitor of platelet activation and platelet thrombus formation, and thus, an inhibitor of the contribution of platelet derived protein disulfide isomerase to thrombus formation. Protein disulfide isomerase expression was similar in both treated and untreated animals upto 30 seconds post-laser injury. After 30 seconds, the expression of protein disulfide isomerase in integrilin treated mice was significantly decreased compared to that in untreated mice, indicating that the initial protein disulfide isomerase was derived from the endothelium and later additional protein disulfide isomerase was derived from the platelets following their accumulation in the developing thrombus. Fibrin deposition, a measure of thrombin generation was comparable in wild-type mice that had been treated with Integrilin or treated with a control buffer, suggesting that endothelial-derived protein disulfide isomerase was sufficient for fibrin generation. The rate and amount of fibrin generation was indistinguishable in both groups. Furthermore, inhibition of the protein disulfide isomerase with the function blocking monoclonal antibody RL-90 (3ug/g mouse) eliminated any fibrin deposition in wild-type mice that had been treated with Integrilin. Taken together, these data indicate that endothelium-derived protein disulfide isomerase is necessary to support fibrin deposition in vivo in our laser injury model of thrombus formation. The initial protein disulfide isomerase expressed at the site of injury is derived from endothelial cells but platelets activated at the site of thrombus formation contribute, amplify and sustain protein disulfide isomerase expression.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 369-369 ◽  
Author(s):  
Reema Jasuja ◽  
Freda H. Passam ◽  
Daniel R Kennedy ◽  
Sarah H Kim ◽  
Lotte van Hessem ◽  
...  

Abstract Abstract 369 Protein disulfide isomerase (PDI) is a prototypical member of a large family of oxidoreductases that catalyze posttranslational disulfide exchange necessary for proper protein folding. Despite having an ER retention sequence, PDI has been identified at cellular locations outside the ER. PDI is secreted from platelets and endothelial cells upon agonist stimulation or vascular injury. Secreted PDI is essential for platelet thrombus formation and fibrin generation in vivo. Inhibition of PDI with a non specific thiol inhibitor bacitracin A or a specific inhibitory anti-PDI antibody RL90 leads to decreased thrombus formation and fibrin generation in vivo in the laser injury model of thrombosis in mice (Cho J. et al, 2008, J. Clin. Invest. 118:1123; Jasuja R. et al, 2010 Blood116:4665). We screened a 5000 compound library of known bioactive compounds using an insulin reduction assay with turbidimetric end point to identify potent and selective small molecule inhibitors of PDI. The screen identified 18 inhibitory compounds representative of 13 separate chemical scaffolds, including 3 flavonols. Rutin, a glycoside of the flavonol quercetin, was the most effective inhibitor and inhibited PDI reductase activity with an IC50 of 6.1 μM. Inhibition of PDI by rutin was confirmed in an additional fluorescence-based reductase assay using oxidized glutathione coupled to di-eosin (Di-E-GSSG). Rutin specifically inhibited PDI activity and did not affect reductase activity of other thiol isomerases ERp57, ERp72, ERp5, thioredoxin or thioredoxin reductase. PDI inhibition by rutin was fully and rapidly reversible, indicating that rutin does not covalently bind PDI. Evaluation of rutin binding to immobilized PDI using surface plasmon resonance indicated a KD of 2.8 μM. Quercetin-3-glucuronide, an abundant metabolite of rutin found in plasma, demonstrated an IC50 of 5.9 μM (3.5–10.1 μM, 95% confidence interval). Isoquercetin, hyperoside, and datiscin, other flavonols with a 3-O-glycosidic linkage also inhibited PDI reductase activity. Metabolites of rutin that lack a 3-O-glycoside such as tamarixetin, isorhamnetin, diosmetin, or quercetin did not inhibit PDI reductase activity, whether or not they are hydroxylated or methoxylated at the 3' and 4' positions on ring B of the flavonol backbone. Activation of washed human platelets induced by 50 μM AYPGKF, a PAR4 agonist, was reversibly inhibited by rutin in a dose-dependent manner. Rutin effectively blocked fibrin generation from laser activated human umbilical vein endothelial cells bathed in plasma with an IC50of approximately 5 μM and 95 % reduction in fibrin formation at 10 μM rutin (P<0.001). Intravenous infusion of rutin prior to vessel wall injury in a mouse laser injury model of thrombosis showed a dose dependent inhibition of both platelet thrombus formation and fibrin generation in vivo. Platelet thrombus size was reduced by 71% at 0.1 mg/kg and fibrin deposition was inhibited by 68% with an intravenous dose of 0.3 mg/kg. Orally administered rutin also demonstrated antithrombotic activity. However, diosmetin, a non derivatizable form of flavonol that cannot under glycosylation at position 3 of the C ring did not affect platelet thrombus size or fibrin deposition. Infused exogenous recombinant PDI can overcome the inhibitory effect of rutin on thrombus formation. These results indicate that PDI is the relevant antithrombotic target of rutin in vivo. Rutin is well tolerated at concentrations higher than that required to inhibit PDI activity in vivo. Thus, targeting extracellular PDI for antiplatelet and anticoagulant therapy may be a viable approach to prevent thrombosis in a setting of coronary artery disease, stroke and venous thromboembolism. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 3902-3906 ◽  
Author(s):  
Christophe Dubois ◽  
Laurence Panicot-Dubois ◽  
Glenn Merrill-Skoloff ◽  
Bruce Furie ◽  
Barbara C. Furie

The role of the collagen receptor glycoprotein VI (GPVI) in arteriolar thrombus formation was studied in FcRγ-null mice (FcRγ–/–) lacking platelet surface GPVI. Thrombi were induced with severe or mild FeCl3 injury. Collagen exposure was significantly delayed and diminished in mild compared with severe FeCl3 injury. Times to initial thrombus formation and vessel occlusion were delayed in FcRγ–/– compared with wild-type mice after severe injury. Platelet accumulation in wild-type mice was decreased after mild compared with severe injury. However, there was little difference between platelet accumulation after severe or mild injury in FcRγ–/–. These data indicate a significant role for GPVI in FeCl3-induced thrombus formation. Pretreatment of wild-type mice with lepirudin further impaired mild FeCl3-induced thrombus formation, demonstrating a role for thrombin. Laser-induced thrombus formation in wild-type and FcRγ–/– was comparable. Collagen exposure to circulating blood was undetectable after laser injury. Normalized for thrombus size, thrombus-associated tissue factor was 5-fold higher in laser-induced thrombi than in severe FeCl3-induced thrombi. Thus, platelet activation by thrombin appears to be more important after laser injury than platelet activation by GPVI-collagen. It may thus be important when considering targets for antithrombotic therapy to use multiple animal models with diverse pathways to thrombus formation.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


2003 ◽  
Vol 197 (11) ◽  
pp. 1585-1598 ◽  
Author(s):  
Shahrokh Falati ◽  
Qingde Liu ◽  
Peter Gross ◽  
Glenn Merrill-Skoloff ◽  
Janet Chou ◽  
...  

Using a laser-induced endothelial injury model, we examined thrombus formation in the microcirculation of wild-type and genetically altered mice by real-time in vivo microscopy to analyze this complex physiologic process in a system that includes the vessel wall, the presence of flowing blood, and the absence of anticoagulants. We observe P-selectin expression, tissue factor accumulation, and fibrin generation after platelet localization in the developing thrombus in arterioles of wild-type mice. However, mice lacking P-selectin glycoprotein ligand 1 (PSGL-1) or P-selectin, or wild-type mice infused with blocking P-selectin antibodies, developed platelet thrombi containing minimal tissue factor and fibrin. To explore the delivery of tissue factor into a developing thrombus, we identified monocyte-derived microparticles in human platelet–poor plasma that express tissue factor, PSGL-1, and CD14. Fluorescently labeled mouse microparticles infused into a recipient mouse localized within the developing thrombus, indicating that one pathway for the initiation of blood coagulation in vivo involves the accumulation of tissue factor– and PSGL-1–containing microparticles in the platelet thrombus expressing P-selectin. These monocyte-derived microparticles bind to activated platelets in an interaction mediated by platelet P-selectin and microparticle PSGL-1. We propose that PSGL-1 plays a role in blood coagulation in addition to its known role in leukocyte trafficking.


2020 ◽  
Vol 4 (4) ◽  
pp. 638-643
Author(s):  
Manuel Salzmann ◽  
Sonja Bleichert ◽  
Bernhard Moser ◽  
Marion Mussbacher ◽  
Mildred Haase ◽  
...  

Abstract Platelets are small anucleate cells that release a plethora of molecules to ensure functional hemostasis. It has been reported that IκB kinase 2 (IKK2), the central enzyme of the inflammatory NF-κB pathway, is involved in platelet activation, because megakaryocyte/platelet-specific deletion of exons 6 and 7 of IKK2 resulted in platelet degranulation defects and prolonged bleeding. We aimed to investigate the role of IKK2 in platelet physiology in more detail, using a platelet-specific IKK2 knockout via excision of exon 3, which makes up the active site of the enzyme. We verified the deletion on genomic and transcriptional levels in megakaryocytes and were not able to detect any residual IKK2 protein; however, platelets from these mice did not show any functional impairment in vivo or in vitro. Bleeding time and thrombus formation were not affected in platelet-specific IKK2-knockout mice. Moreover, platelet aggregation, glycoprotein GPIIb/IIIa activation, and degranulation were unaltered. These observations were confirmed by pharmacological inhibition of IKK2 with TPCA-1 and BMS-345541, which did not affect activation of murine or human platelets over a wide concentration range. Altogether, our results imply that IKK2 is not essential for platelet function.


2018 ◽  
Vol 38 (04) ◽  
pp. 203-210 ◽  
Author(s):  
Rüdiger Scharf

AbstractPlatelets react immediately in response to traumatic vascular injury by adhesion, activation, aggregation and subsequent haemostatic plug formation. While this reaction pattern is essential for haemostasis, platelet responses can also cause occlusive thrombi in diseased arteries, leading to myocardial infarction or stroke. Initially, flowing platelets are captured from the circulation to vascular lesions. This step is mediated by glycoprotein (GP) Ib-IX-V interacting with immobilized von Willebrand factor (VWF) on exposed subendothelial components. Tethered platelets can now bind to collagen through GPVI and integrin α2β1. Outside-in signals from the adhesion receptors act synergistically with inside-out signals from soluble stimuli and induce platelet activation. These mediators operate through G protein–coupled receptors and reinforce adhesion and activation. Typical manifestations of activated platelets include calcium mobilization, procoagulant activity, cytoskeletal reorganization, granule secretion and aggregation. This requires activation of integrin αIIbβ3 with shifting into a high-affinity state and is indispensable to bind soluble fibrinogen, VWF and fibronectin. The multiple interactions and the impact of thrombin result in firm adhesion and recruitment of circulating platelets into growing aggregates. A fibrin meshwork supports stabilization of haemostatic thrombi and prevents detachment by the flowing blood. This two-part review provides an overview of platelet activation and signal transduction mechanisms with a focus on αIIbβ3-mediated outside-in signaling in integrin variants. In the first part, a three-stage model of platelet recruitment and activation in vivo is presented. Along with that, platelet responses upon exposure to thrombogenic surfaces followed by platelet-to-platelet interactions and formation of haemostatic thrombi are discussed. Moreover, several determinants involved in pathological thrombosis will be reviewed.


2005 ◽  
Vol 146 (4) ◽  
pp. 216-226 ◽  
Author(s):  
George Hsiao ◽  
Ying Wang ◽  
Nien-Hsuan Tzu ◽  
Tsorng-Hang Fong ◽  
Ming-Yi Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document