scholarly journals Glycoprotein VI–dependent and –independent pathways of thrombus formation in vivo

Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 3902-3906 ◽  
Author(s):  
Christophe Dubois ◽  
Laurence Panicot-Dubois ◽  
Glenn Merrill-Skoloff ◽  
Bruce Furie ◽  
Barbara C. Furie

The role of the collagen receptor glycoprotein VI (GPVI) in arteriolar thrombus formation was studied in FcRγ-null mice (FcRγ–/–) lacking platelet surface GPVI. Thrombi were induced with severe or mild FeCl3 injury. Collagen exposure was significantly delayed and diminished in mild compared with severe FeCl3 injury. Times to initial thrombus formation and vessel occlusion were delayed in FcRγ–/– compared with wild-type mice after severe injury. Platelet accumulation in wild-type mice was decreased after mild compared with severe injury. However, there was little difference between platelet accumulation after severe or mild injury in FcRγ–/–. These data indicate a significant role for GPVI in FeCl3-induced thrombus formation. Pretreatment of wild-type mice with lepirudin further impaired mild FeCl3-induced thrombus formation, demonstrating a role for thrombin. Laser-induced thrombus formation in wild-type and FcRγ–/– was comparable. Collagen exposure to circulating blood was undetectable after laser injury. Normalized for thrombus size, thrombus-associated tissue factor was 5-fold higher in laser-induced thrombi than in severe FeCl3-induced thrombi. Thus, platelet activation by thrombin appears to be more important after laser injury than platelet activation by GPVI-collagen. It may thus be important when considering targets for antithrombotic therapy to use multiple animal models with diverse pathways to thrombus formation.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1510-1510
Author(s):  
Christophe Dubois ◽  
Laurence Panicot-Dubois ◽  
Justin F. Gainor ◽  
Barbara C. Furie ◽  
Bruce Furie

Abstract Adhesion to and activation of platelets at an injured vessel wall are critical events in the formation of a thrombus. Calcium mobilization is one marker of platelet activation. Of different agonists capable of activating platelets in vitro, thrombin, collagen and vWF have been described to induce calcium mobilization, leading to the formation of aggregates. Using high speed digital multichannel intravital microscopy, we characterized calcium mobilization during platelet activation and thrombus formation in genetically modified mice. The kinetics of platelet activation and accumulation after laser-induced injury in cremaster muscle arterioles of living mice were analyzed. In wild type mice, platelets adhered and accumulated rapidly at the site of laser-induced injury. Thrombi increased in size, reached a maximum size at 90–120 sec, decreased in size and then stabilized within 3 to 4 min post-injury. In vWF−/− mice, the kinetics of platelet accumulation followed the same pattern as in wild type mice. However, a significant albeit modest reduction in the size of each thrombus was observed in these genetically deficient mice in comparison with wild type mice. By ranking the thrombi by size, we observed that 40% of the thrombi formed in vWF−/− mice were present in the quadrant containing the smallest thrombi versus 18% for the wild type mice. Only 8% of the thrombi formed in vWF−/− mice were distributed in the quadrant containing the largest thrombi versus 32% for the wild type mice. In wild type mice treated with lepirudin, a specific inhibitor of thrombin activity, a small early accumulation of platelets was observed at about 16 sec whereas in untreated wild type mice this early accumulation is often obscured by subsequent thrombin-mediated platelet accumulation and activation. However, at the time of maximal thrombus size in wild-type mice, platelet accumulation in wild type mice was more than ten-fold greater than in wild type mice treated with lepirudin. The kinetics of platelet accumulation were similar in FcRγ−/− mice lacking GPVI, GPVI-depleted mice and wild type mice. Furthermore, depletion of GPVI from the platelet surface of vWF−/− mice or platelets of wild type mice treated with lepirudin did not alter the kinetics of platelet accumulation in those mice. By monitoring calcium mobilization per platelet engaged in the growing thrombus, we observed that elevated calcium levels in each platelet were similar in FcRγ−/−, GPVI depleted, vWF−/− and wild type mice. However in wild type mice treated with lepirudin, platelet calcium mobilization was almost completely inhibited in comparison with those observed in wild type mice. Our results indicate that thrombin is the major agonist leading to platelet activation after laser-induced injury. Collagen, as previously reported (Dubois, Blood.2006;107:3902) does not play a role in platelet thrombus formation after laser injury and, based on data reported here, does not play a role in platelet activation in this model. vWF is important for the growth of the platelet thrombus but is not required for initial platelet accumulation or platelet activation in vivo in this thrombosis model. The platelet agonist or ligand responsible for initial early platelet accumulation after laser-induced injury is unknown, and does not require GPVI, thrombin or vWF.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1050-1050
Author(s):  
Angela Doerr ◽  
Denise Pedrosa ◽  
Maria Schander ◽  
Yotis A. Senis ◽  
Alexandra Mazharian ◽  
...  

Abstract Background Thrombus formation is a complex, dynamic and multistep process, based on two crucial steps: platelet adhesion and platelet aggregation that both involve the large multimeric plasma glycoprotein Von Willebrand Factor (VWF). VWF binding to the GPIb/X/V complex initiates platelet adhesion to the vessel wall at high shear stress and triggers platelet activation resulting in the generation of thrombin and activation of integrin αIIbβ3 on the platelet surface. This activation of αIIbβ3 in turn leads to outside-in signalling and promotes binding of αIIbβ3 to fibrinogen and VWF, mediating thrombus growth. Trigging receptor expressed on myeloid cells like transcript-1 (TLT-1) is a transmembrane receptor, which is targeted to α-granules of platelets and megakaryocytes. Thrombin-induced platelet activation rapidly presents TLT-1 on the platelet surface and releases a soluble form (sTLT-1) into the circulation. To date the only known ligand for TLT-1 is fibrinogen and TLT-1 has been implicated in the regulation of inflammation-associated thrombosis. Interestingly, a putative interaction of VWF with TLT-1 was indicated by a screen with known platelet receptors. Aim We aimed to evaluate the effect of TLT-1/VWF interaction on platelet aggregation and thrombus formation. Methods Recombinant TLT-1 and VWF were purified and the interaction between TLT-1 and VWF was analyzed by surface plasmon resonance. Static interaction was confirmed by an ELISA based binding assay. Flow assays assessed TLT-1 dependent thrombus formation in vitro. The effects of TLT-1 knockout on thrombus formation in vivo were examined via intravital microscopy of the flow restricted inferior vena cava (IVC) and imaging of platelet attachment and fibrin formation over 6 hours. Furthermore, thrombus formation and resolution was followed by high resolution ultrasound imaging after stenosis induction for 28 days. Integrin aIIbb3 activation was analysed by flow cytometry using the JonA antibody in murine platelet rich plasma. Results VWF bound to soluble TLT-1 with high affinity in a calcium dependent manner (K D = 1.9 nM). The binding site on VWF was mapped to the A3D4 domains and high molecular weight VWF multimers had the greatest affinity for TLT-1. Moreover, HEK293 cells transfected with TLT-1 bound to VWF and VWF strings formed specifically on TLT-1 expressing cells, confirming the interaction between the two proteins. VWF inhibited the binding of fibrinogen to TLT-1, suggesting that VWF is a preferred binding partner of TLT-1. Human platelets exhibited increased TLT-1 surface expression after TRAP-6 induced platelet activation and TLT-1 was detected throughout thrombi formed under flow. Furthermore, a TLT-1 blocking antibody inhibited the interaction of TLT-1 with VWF and reduced platelet capture to type I collagen under shear stress. Ex vivo perfusion of blood from TLT-1 knock out mice over type I collagen also resulted in reduced thrombus formation compared to blood from wild-type mice. TLT-1 knock-out platelets were activated by thrombin similar to wild-type controls, based on P-selectin expression in platelet rich plasma. However, activation of integrin αIIbβ3 determined by JonA staining was reduced in the absence of TLT-1. This phenotype of reduced integrin αIIbβ3 activation on P-selectin positive platelets was phenocopied by the thrombin platelet response in platelet rich plasma from VWF -/- mice, but not GPIbα-deficient mice, indicating that the TLT-1-VWF interaction on platelets directly influences integrin αIIbβ3 activation. Significantly, thrombus formation was markedly reduced in TLT-1 knockout mice in the IVC model in vivo in comparison to wild-type mice. Conclusions This study demonstrates that TLT-1 is a novel platelet ligand for VWF, and that TLT-1 may preferentially bind VWF over fibrinogen. We propose a TLT-1/VWF dependent integrin αIIbβ3 activation mechanism which plays a pivotal role in thrombus formation under non-inflammatory and potentially inflammatory conditions. Disclosures Ruf: ICONIC Therapeutics: Consultancy; MeruVasimmune: Current holder of individual stocks in a privately-held company; ARCA bioscience: Consultancy, Patents & Royalties.


2019 ◽  
Vol 3 (7) ◽  
pp. 1154-1166 ◽  
Author(s):  
Alyssa J. Moroi ◽  
Nicole M. Zwifelhofer ◽  
Matthew J. Riese ◽  
Debra K. Newman ◽  
Peter J. Newman

Abstract Diacylglycerol kinases (DGKs) are a family of enzymes that convert diacylglycerol (DAG) into phosphatidic acid (PA). The ζ isoform of DGK (DGKζ) has been reported to inhibit T-cell responsiveness by downregulating intracellular levels of DAG. However, its role in platelet function remains undefined. In this study, we show that DGKζ was expressed at significant levels in both platelets and megakaryocytes and that DGKζ-knockout (DGKζ-KO) mouse platelets were hyperreactive to glycoprotein VI (GPVI) agonists, as assessed by aggregation, spreading, granule secretion, and activation of relevant signal transduction molecules. In contrast, they were less responsive to thrombin. Platelets from DGKζ-KO mice accumulated faster on collagen-coated microfluidic surfaces under conditions of arterial shear and stopped blood flow faster after ferric chloride–induced carotid artery injury. Other measures of hemostasis, as measured by tail bleeding time and rotational thromboelastometry analysis, were normal. Interestingly, DGKζ deficiency led to increased GPVI expression on the platelet and megakaryocyte surfaces without affecting the expression of other platelet surface receptors. These results implicate DGKζ as a novel negative regulator of GPVI-mediated platelet activation that plays an important role in regulating thrombus formation in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 842-842 ◽  
Author(s):  
Christophe Dubois ◽  
Laurence Panicot-Dubois ◽  
Bruce Furie ◽  
Barbara C. Furie

Abstract Collagen is one of the major components of the vessel wall responsible for platelet adhesion and activation at sites of vascular injury. In vitro studies have shown that α2β1 and GPVI directly and αIIbβ3 and GPIb-IX-V indirectly, via vWF, are all involved in the adhesion of platelets to collagen. However, the importance of GPVI on the adhesion and activation of platelets in vivo is still controversial. Here we show that in vivo GPVI plays an important role in platelet adhesion and activation when collagen is exposed to blood. To determine the role of GPVI on thrombus formation, we compared thrombus formation in FcRγ null mice, which do not express GPVI on the platelet surface, and in wild type mice after vessel injury induced by ferric chloride or by a nitrogen dye laser. We studied arterial thrombus formation in the microcirculation of the cremaster and the mesentery muscles using high speed multi channel intravital fluorescence widefield microscopy. Real time platelet accumulation in the developing thrombus was detected using a fluorescent antibody directed against αIIb. After an injury induced by the ferric chloride, we observed a significant delay in both the time to formation of an initial thrombus and the time to vessel occlusion in FcRγ null mice in comparison with wild type mice. When activated platelets isolated from FcRγ null mice were injected into a recipient FcRγ null mouse, we were able to restore the formation of a thrombus. This effect was abolished by injection of Lamifiban, an inhibitor of activated αIIbβ3. These results indicate that GPVI is not only involved in vivo in the adhesion of platelets to collagen but also plays an important role in the activation of the platelet fibrinogen receptor αIIbβ3. In contrast, platelet accumulation after laser-induced injury in the FcRγ null and the wild type mice was comparable. No difference in the kinetics of platelet accumulation into the laser induced growing thrombus was observed. To understand the different pathways leading to thrombus formation in vivo after ferric chloride or laser induced injury, we examined collagen exposure after vessel injury and the accumulation of tissue factor (TF) in the developing arterial thrombus of FcRγ null and wild type mice using antibodies directed against mouse collagen type I and mouse TF. We observed a significant exposure of collagen at sites of thrombus formation after ferric chloride treatment. In contrast, we did not observe any collagen exposure on blood vessels after laser-induced injury. Furthermore, the ratio of TF/platelets present into the thrombus after injury was 5 fold greater after laser injury than after ferric chloride treatment. These results suggest that TF but not collagen plays an important role in thrombus formation induced by laser injury of the vessel wall. Altogether, our results indicate that the GPVI receptor is involved in vivo in platelet adhesion when collagen is exposed to blood and plays an important role in the activation of other platelet integrins such as αIIbβ3 leading to the formation of a stable thrombus.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 624-624 ◽  
Author(s):  
Erik R. Vandendries ◽  
Justin R. Hamilton ◽  
Shaun R. Coughlin ◽  
Barbara C. Furie ◽  
Bruce Furie

Abstract The serine protease, thrombin, is necessary for the conversion of fibrinogen to fibrin and is a potent activator of platelets. Thrombin-induced platelet activation, as measured by shape change, calcium mobilization, and ATP secretion, requires the protease-activator receptor 4 (PAR4). Platelets isolated from PAR4 knock-out mice are unresponsive to thrombin, and PAR4 null mice appear to be protected from thrombosis in a ferric chloride-induced injury model of thrombosis and a thromboplastin model of pulmonary embolism. To examine further the role of thrombin-induced platelet activation in developing thrombi, we have examined the in vivo kinetics of thrombus formation in living mice lacking PAR4 using high-speed widefield digital microscopy. In this study, platelets were labeled using anti-CD41 Fab fragments conjugated to Alexa-488. Thrombi were generated by laser-induced injury of the cremaster arteriolar vessel wall, and the total fluorescent antibody accumulation was monitored and quantitated for 5 minutes after injury. In PAR4 null mice, the thrombi generated were significantly smaller with an early arrest of thrombus growth when compared to thrombi generated in wild-type mice. The maximum thrombus platelet accumulation in PAR4 null mice (median of 30 thrombi in 3 mice) was 75% less than that seen in wild-type mice (median of 33 thrombi in 4 mice)(P<0.001). The time to half-maximal and the time to maximal thrombus formation in PAR4 null mice is approximately 5.5 seconds and 16 seconds, respectively, compared to 45 seconds and 74 seconds in wild-type mice (P<0.001). The shortened time to maximal platelet accumulation appears to be secondary to an early termination of thrombus growth. Fibrin generation was monitored using Alexa-647 conjugated to an anti-fibrin antibody that does not recognize fibrinogen in mice simultaneously infused with anti-CD41 Fab conjugated to Alexa-488. No difference in total fibrin accumulation was seen during the first 4 minutes of thrombus formation in PAR4 null mice (median of 23 thrombi in 3 mice) compared to thrombi generated in wild-type mice (median of 26 thrombi in 4 mice) despite a significant decrease in platelet accumulation in PAR4 null thrombi. Most of the fibrin deposition in both wild-type and PAR4 null thrombi was observed at the vascular wall/thrombus interface. In summary, thrombin-induced platelet activation via PAR4 is required for normal thrombus growth. However, in this model of thrombosis, neither PAR4 nor maximal thrombus growth appears to be necessary for fibrin deposition. This suggests that a platelet-independent mechanism of thrombin generation may exist. Alternatively, the amount of platelet accumulation and activation in PAR4 null mice may be sufficient for normal thrombin generation and subsequent fibrin deposition.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3526-3526 ◽  
Author(s):  
Laurence Panicot-Dubois ◽  
Christophe Dubois ◽  
Barbara C. Furie ◽  
Bruce Furie ◽  
Dominique Lombardo

Abstract Bile Salt Dependent Lipase (BSDL) is an enzyme secreted by pancreatic acinar cells. BSDL, in the presence of primary bile salts, participates in the hydrolysis of dietary lipid esters in the duodenum lumen. This 105 kDa N and O-glycosylated protein has been detected in the plasma of normal subjects. Recent in vitro and in vivo studies demonstrated that pancreatic BSDL reaches the blood via transcytosis through enterocytes. Other studies showed that pancreatic human BSDL is captured by human umbilical vein endothelial cells and induces the proliferation of smooth muscle cells in vitro at BSDL concentrations found in blood, suggesting that this enzyme may play a role in hemostasis and thrombosis. However the specific role of circulating BSDL is unknown. The goal of this study was to determine the possible involvement of circulating BSDL in thrombus formation. We investigated the participation of circulating mouse BSDL in thrombus formation using widefield intravital microscopy in the cremaster muscle of living mice. Thrombi were formed following laser injury of the vessel wall of an arteriole in the cremaster muscle. Pancreatic mouse BSDL, a 74 kDa glycoprotein, was detected using several antibodies directed against either the whole human BSDL (pAbL64, pAbL32) or a peptide based on a sequence in the N-terminal domain of BSDL (Ser326-Thr350; pAbAntipeptide). Mouse and human BSDL share about 80% sequence homology, the main difference localized in the C-terminal domain, which is truncated to the mouse BSDL compared with the human enzyme. All the antibodies are able to specifically recognize the mouse pancreatic BSDL. Using antibodies pAbL64, pAbL32, or pAbAntipeptide we observed specific accumulation of circulating mouse BSDL into the growing thrombus. The circulating BSDL co-localized with platelets present in the thrombus. These results suggest that circulating BSDL is involved in thrombus formation in vivo. In order to determine if BSDL plays a role in platelet activation and aggregation, we performed in vitro studies on human washed platelets. BSDL increased both the amount of phosphatidylserine exposure on the surface of platelets and the activation of αIIbβ3 induced by thrombin. These results indicate that this enzyme can amplify the activation of platelets in vitro. While BSDL alone cannot induce the aggregation of platelets, this enzyme significantly increases the amount of platelet aggregation induced by SFLLRN peptide or thrombin. Altogether, these data suggeste that circulating BSDL participates in the thrombus formation after laser injury of the arterial wall and can amplify both the activation of platelets and the phosphatidylserine exposure, increasing the thrombotic response after vessel injury. This mechanism may be operative in the development of venous thromboembolic disease in pancreatic cancer.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1508-1508 ◽  
Author(s):  
Shawn M. Jobe ◽  
Katina M. Wilson ◽  
Lori Leo ◽  
Jeffery D. Molkentin ◽  
Steven R. Lentz ◽  
...  

Abstract Dual stimulation of platelets with thrombin and collagen results in the formation of a unique subpopulation of highly activated platelets. Characteristics of the highly activated platelet subpopulation includeincreased surface retention of procoagulant alpha granule proteins,high-level phosphatidylserine (PS) externalization, andmodulation of the fibrinogen receptor αIIbβ3 as evidenced by their decreased recognition by antibodies to activated αIIbβ3 such as PAC-1 and JON/A. Formation of the highly activated platelet subpopulation is closely correlated with a rapid loss of mitochondrial transmembrane potential (ΔΨm), a marker of MPTP formation. To test whether formation of the MPTP might regulate the development of the highly activated platelet subpopulation, platelet activation responses were examined in the presence of inhibitors and activators of MPTP formation. Cyclosporine, an inhibitor of MPTP formation, inhibited both PS externalization and αIIbβ3 modulation following dual stimulation with thrombin and the glycoprotein VI agonist convulxin (58 ± 4% vs. 9 ± 3%, p<0.01). Conversely, thrombin stimulation of platelets in the presence of H2O2 (100μM), an MPTP activator, increased PS externalization and αIIbβ3 modulation relative to platelets stimulated with thrombin alone (11 ± 3% vs. 48 ± 6%, p<0.05). Platelet activation responses were examined in cyclophilin D null (CypD −/−) mice, which have marked impairment of MPTP formation. Following dual agonist stimulation with thrombin and convulxin, both αIIbβ3 modulation and platelet PS externalization were significantly abrogated in CypD −/− platelets relative to wild type (7 ± 1% vs. 69 ± 1%, p<0.01). Alpha granule release, however, was unaffected in the absence of CypD. In vitro tests of platelet function similarly demonstrated that CypD −/− platelets had marked impairment of platelet prothrombinase activity relative to wild-type platelets after stimulation with thrombin and convulxin, but normal platelet aggregation responses. We then tested the hypothesis that CypD −/− mice would have an altered thrombotic response to arterial injury. Following photochemical injury of the carotid artery endothelium, a stable occlusive thrombus formed more rapidly in CypD −/− than in wild-type mice (16 ± 2 vs. 32 ± 7 min, p<0.05). Tail-bleeding time was unaffected. These results strongly implicate cyclophilin D and the MPTP as critical regulators of the subset of platelet activation responses occurring in the highly activated platelet subpopulation and suggest that activation of this novel platelet mitochondrial signaling pathway might play an important role in the regulation of the thrombotic response in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1836-1836
Author(s):  
Price S. Blair ◽  
Qiansheng Ren ◽  
Gwenda J. Graham ◽  
James R. Dilks ◽  
Sidney W. Whiteheart ◽  
...  

Abstract Individuals whose platelets lack dense core or alpha-granules suffer varying degrees of abnormal bleeding, implying that granule cargo contributes to hemostasis. Despite these clinical observations, little is known regarding the effects of impaired platelet granule secretion on thrombus formation in vivo. The release of cargo from platelet granules requires a group of membrane proteins called SNAREs (Soluble NSF Attachment Protein Receptors) that mediate fusion of granule membranes to the plasma membrane and open canalicular system. Endobrevin/VAMP-8 is the primary vesicular-SNARE (v-SNARE) responsible for efficient release of dense core and a-granule contents. To evaluate the importance of VAMP-8-mediated secretion on the kinetics of thrombus formation in vivo, we measured platelet accumulation following laser-induced vascular injury in VAMP-8−/− mice. Three different phases of thrombus formation - initiation, maximal accumulation, and stabilized platelet accumulation - were tested. Analysis of initial thrombus formation from wild-type and VAMP-8−/− mice showed that average platelet accumulation in VAMP- 8−/− mice was 23% of accumulation in wild-type mice (P=0.009) at 30 sec following injury. There was a trend towards smaller maximal thrombus size in VAMP-8−/− mice, but the difference was not statistically significant (P=0.1). Average stabilized platelet accumulation at 180 sec in VAMP-8−/− mice was 40% of wild-type mice (P=0.05). Thus, thrombus formation is delayed and decreased in VAMP-8−/− mice, but not absent. Dense granule release occurs more rapidly than alpha-granule release, which does not occur for 2–3 min following laser-induced vascular injury. Agonist-induced dense granule release from VAMP-8−/− platelets is defective. To directly evaluate the role of dense granule release on the kinetics of thrombus formation, we assessed thrombus formation in the mouse model of Hermansky-Pudlak syndrome, ruby-eye, which lack dense granules. Thrombus formation following laser-induced vascular injury was nearly abolished in ruby-eye mice such that maximal platelet accumulation was 15% that of wild-type mice. In vitro, the thrombin doses required to induce irreversible aggregation in wild-type, VAMP-8−/−, and ruby-eye platelets were 25 mU, 50 mU, and 150 mU, respectively. Incubation with apyrase had little effect on thrombin-induced aggregation of VAMP-8−/− or ruby-eye platelets. In contrast, incubation of wild-type platelets with apyrase reduced their thrombin sensitivity compared to that of ruby-eye platelets. Supplementation with a substimulatory ADP concentration reversed the thrombin-induced aggregation defect in VAMP-8−/− and ruby-eye mice. Thus, defective ADP release is the primary abnormality leading to impaired aggregation in VAMP-8−/− and ruby-eye mice. Tail bleeding times were assessed in VAMP- 8−/− mice to evaluate the role of VAMP-8 in hemostasis. In contrast to ruby-eye mice, which have a markedly prolonged bleeding time, tail bleeding times in VAMP-8−/− mice were not significantly prolonged compared to those in wild-type mice. These results demonstrate the importance of VAMP-8 and dense granule release in the initial phases of thrombus formation and validate the distal platelet secretory machinery as a potential target for anti-platelet therapies.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 691-691 ◽  
Author(s):  
Reema Jasuja ◽  
Jaehyung Cho ◽  
Bruce Furie ◽  
Barbara Furie

Abstract We have previously reported that protein disulfide isomerase is required in wild-type mice for platelet thrombus formation and fibrin generation in an in vivo laser injury model of thrombosis (Cho et al. J. Clin. Invest., 2008; 118:1123–31). Fibrin deposition after laser injury to the vessel wall in Par4−/− mice, lacking the G protein-coupled platelet thrombin receptor, is independent of platelets or requires minimal platelet activation or accumulation (Vandendries et al. Proc. Natl. Acad. Sci., 2007; 104:288–92). However, protein disulfide isomerase inhibitors have a dramatic effect on fibrin accumulation in Par4− mice, suggesting that these inhibitors may function by a platelet independent mechanism. Here, we compare the contributions of endothelium and platelet-derived protein disulfide isomerase to fibrin generation in the mouse laser injury model of thrombosis. In vitro studies using cultured human umbilical vein endothelial cells and human aortic endothelial cells show that protein disulfide isomerase can be secreted rapidly into the culture medium from these cells upon thrombin stimulation. Using intravital microscopy, we observe that protein disulfide isomerase is not detectable on the vessel wall prior to laser injury but can be detected on the injured cremaster arteriolar wall and in the developing thrombus very rapidly after laser induced injury in the live mouse. The median integrated fluorescence intensity for protein disulfide isomerase in wild-type mice was compared to wild-type mice injected with 10ug/g mouse of Integrilin, an inhibitor of platelet activation and platelet thrombus formation, and thus, an inhibitor of the contribution of platelet derived protein disulfide isomerase to thrombus formation. Protein disulfide isomerase expression was similar in both treated and untreated animals upto 30 seconds post-laser injury. After 30 seconds, the expression of protein disulfide isomerase in integrilin treated mice was significantly decreased compared to that in untreated mice, indicating that the initial protein disulfide isomerase was derived from the endothelium and later additional protein disulfide isomerase was derived from the platelets following their accumulation in the developing thrombus. Fibrin deposition, a measure of thrombin generation was comparable in wild-type mice that had been treated with Integrilin or treated with a control buffer, suggesting that endothelial-derived protein disulfide isomerase was sufficient for fibrin generation. The rate and amount of fibrin generation was indistinguishable in both groups. Furthermore, inhibition of the protein disulfide isomerase with the function blocking monoclonal antibody RL-90 (3ug/g mouse) eliminated any fibrin deposition in wild-type mice that had been treated with Integrilin. Taken together, these data indicate that endothelium-derived protein disulfide isomerase is necessary to support fibrin deposition in vivo in our laser injury model of thrombus formation. The initial protein disulfide isomerase expressed at the site of injury is derived from endothelial cells but platelets activated at the site of thrombus formation contribute, amplify and sustain protein disulfide isomerase expression.


2007 ◽  
Vol 117 (4) ◽  
pp. 953-960 ◽  
Author(s):  
Christophe Dubois ◽  
Laurence Panicot-Dubois ◽  
Justin F. Gainor ◽  
Barbara C. Furie ◽  
Bruce Furie

Sign in / Sign up

Export Citation Format

Share Document