scholarly journals Shifts in the Statistics of Daily Rainfall in South America Conditional on ENSO Phase

2008 ◽  
Vol 21 (5) ◽  
pp. 849-865 ◽  
Author(s):  
C. F. Ropelewski ◽  
M. A. Bell

Abstract There are several well-documented studies showing the shifts in seasonal mean rainfall and temperature conditional on El Niño–Southern Oscillation (ENSO) phase. Here the shifts in the seasonal histograms of daily rainfall over South America conditional on ENSO phase are examined. The authors are motivated to analyze daily rainfall statistics over seasons by the demands for information on the shorter temporal scales voiced by users of climate data. In the first stage of the analysis the Kolmogorov–Smirnov (K-S) test is used, comparing El Niño to La Niña histograms of daily station data, to identify regions where there are significant shifts in the histograms. The K-S statistic analyses of daily station data are then compared to the same analyses performed on existing publicly available gridded station datasets. The degree to which the station and gridded data agree in showing geographical regions of significance provides evidence that the gridded fields might provide guidance on the nature of the ENSO signal where station data are not available. Further, the analysis of the gridded datasets can be used to motivate and guide efforts to obtain more complete daily data where the gridded datasets suggest an ENSO signal. As an example a detailed comparison of one station in southern Brazil and its nearest neighbors in the gridded data are presented, suggesting that, despite biases, the gridded fields are generally consistent with the station data where both are available. For many regions of the world neither daily station data nor daily gridded datasets are available for analysis. Thus despite documented and well-known regional biases in the precipitation fields available in the NCEP–NCAR reanalysis the extent to which shifts in the daily statistics of the NCEP–NCAR reanalysis precipitation are consistent with station and gridded station analyses is also examined. The preliminary work described here suggests that while the reanalysis does not ideally replicate the gridded station results the reanalysis may be useful as a tool for indicating candidate regions for further analysis with station or gridded data.

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1605
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza

Contrasting effects of the tropical Indian and Pacific Oceans on the atmospheric circulation and rainfall interannual variations over South America during southern winter are assessed considering the effects of the warm Indian Ocean basin-wide (IOBW) and El Niño (EN) events, and of the cold IOBW and La Niña events, which are represented by sea surface temperature-based indices. Analyses are undertaken using total and partial correlations. When the effects of the two warm events are isolated from each other, the contrasts between the associated rainfall anomalies in most of South America become accentuated. In particular, EN relates to anomalous wet conditions, and the warm IOBW event to opposite conditions in extensive areas of the 5° S–25° S band. These effects in the 5° S–15° S sector are due to the anomalous regional Hadley cells, with rising motions in this band for the EN and sinking motions for the warm IOBW event. Meanwhile, in subtropical South America, the opposite effects of the EN and warm IOBW seem to be due to the presence of anomalous anticyclone and cyclone and associated moisture transport, respectively. These opposite effects of the warm IOBW and EN events on the rainfall in part of central South America might explain the weak rainfall relation in this region to the El Niño–Southern Oscillation (ENSO). Our results emphasize the important role of the tropical Indian Ocean in the South American climate and environment during southern winter.


2020 ◽  
Vol 80 (4) ◽  
pp. 589-608
Author(s):  
Sergio Cabrales ◽  
Jesus Solano ◽  
Carlos Valencia ◽  
Rafael Bautista

PurposeIn the equatorial Pacific, rainfall is affected by global climate phenomena, such as El Niño Southern Oscillation (ENSO). However, current publicly available methodologies for valuing weather derivatives do not account for the influence of ENSO. The purpose of this paper is to develop a complete framework suitable for valuing rainfall derivatives in the equatorial Pacific.Design/methodology/approachIn this paper, we implement a Markov chain for the occurrence of rain and a gamma model for the conditional quantities using vector generalized linear models (VGLM). The ENSO forecast probabilities reported by the International Research Institute for Climate and Society (IRI) are included as independent variables using different alternatives. We then employ the Esscher transform to price rainfall derivatives.FindingsThe methodology is applied and calibrated using the historical rainfall data collected at the El Dorado airport weather station in Bogotá. All the estimated coefficients turn out to be significant. The results prove more accurate than those of Markovian gamma models based on purely statistical descriptions of the daily rainfall probabilities.Originality/valueThis procedure introduces the novelty of incorporating variables related to the climatic phenomena, which are the forecast probabilities regularly published for the occurrence of El Niño and La Niña.


2016 ◽  
Vol 9 (1) ◽  
pp. 032
Author(s):  
Éder Leandro Maier ◽  
Juliana Costi ◽  
Sandra Barreira ◽  
Jefferson Cardia Simões

Este artigo discute os principais padrões médios e anômalos da precipitação sobre a América do Sul no período 1979–2008. Para isso foram manipulados dados mensais da precipitação observada em 890 estações meteorológicas localizadas na Argentina, Bolívia, Brasil, Paraguai e Uruguai ao longo desse período de trinta anos. As médias climáticas foram subtraídas das amostras, originando as anomalias, as quais foram agrupadas por meio da Análise das Componentes Principais em dois modos. No modo T se identificou 6 componentes principais, que explicam 35% da variância e representam 12 padrões espaciais anômalos originados, principalmente, pelo fenômeno El Niño–Oscilação Sul (ENOS) e pela variabilidade do Atlântico Norte. No modo S foram identificadas 8 zonas em que a variabilidade temporal das séries anômalas é semelhante, sendo que o ENOS prevalece no controle das anomalias nas zonas situadas na região equatorial e extratropical, além disso, a variabilidade do Atlântico Norte pode maximizar ou minimizar os impactos do ENOS. A frequência de recorrência desses estresses hídrico variam entre 20 e 60 meses.  This article discusses mean and anomalous rainfall patterns over South America in the period 1979–2008. For that we handled monthly precipitation data observed at 890 meteorological stations located in Argentina, Bolivia, Brazil, Paraguay and Uruguay over this thirty years period. Climatic means were subtracted from the data, resulting in anomalies that were grouped by Principal Component Analysis in two modes. We identified 6 main components in the T mode, which explain 35% of the variance and represent 12 anomalous spatial patterns originated mainly by El Niño–Southern Oscillation (ENSO) phenomenon and the North Atlantic variability. In mode S, we identified eight zones where the series temporal variability is also anomalous, and the ENOS prevails as the anomalies controller in the equatorial and extra tropical regions. Further, North Atlantic variability may maximize or minimize the ENSO impact. The frequency of these recurrent water stresses range from 20 to 60 months. Keywords: Precipitation, South America, PCA  


2006 ◽  
Vol 6 ◽  
pp. 35-41 ◽  
Author(s):  
R. P. Kane

Abstract. As a finer classification of El Niños, ENSOW were defined as years when El Niño (EN) existed on the Peru coast, Southern Oscillation Index SOI (Tahiti minus Darwin pressure) was negative (SO), and Pacific SST anomalies were positive (W). Further, Unambiguous ENSOW were defined as years when SO and W occurred in the middle of the calendar year, while Ambiguous ENSOW were defined as years when SO and W occurred in the earlier or later part of the calendar year (not in the middle). In contrast with India and some other regions where Unambiguous ENSOW were associated predominantly with droughts, in the case of South America, the association was mixed. In Chile on the western coast and Uruguay etc. on the eastern coast, the major effect was of excessive rains. In Argentina and central Brazil, the effects were unclear. In Amazon, the effects were not at all uniform, and were different (droughts or excess rains) or even absent in regions only a few hundred kilometers away from each other. Even in Peru-Ecuador, the effects were clear only in the coastal regions. In the interior and in the Andes, the effects were obscure. In NE Brazil, El Niños have been popularly known to be causing severe droughts. The fact is that during 1871–1998, there were 52 El Niño events, out of which 31 were associated with droughts in NE Brazil, while 21 had no association. The reason is that besides El Niños, another major factor affecting NE Brazil is the influx of moisture from the Atlantic. In some years, warmer Atlantic in conjunction with westward winds can bring moisture to NE Brazil, nullifying the drought effects of El Niños. A curious feature at almost all locations is the occurrence of extreme events (high floods or severe droughts) in some years, apparently without any El Niño or La Niña events. This possibility should always be borne in mind.


MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 187-196
Author(s):  
T. N. JHA ◽  
R. D. RAM

Station wise daily rainfall data of sixty years is used to study rainfall departure and variability  in  Kosi, Kamala/Bagmati/Adhwara and  Gandak/Burhi Gandak catchments during  monsoon  season. Station and catchment wise rainfall time series have been made to compute rainfall departure and Coefficient of Variation (CV). Southern Oscillation Index (SOI), Multivariate ENSO Index (MEI) and ENSO strength based on percentile analysis are used to ascertain their impact on rainfall distribution in the category as excess, normal, deficient and scanty. Results indicate that the variability is greater over Kosi as compared to the other catchments. Probability of normal rainfall is found 0.75 and there is no possibility of scanty rain over the catchments during El Nino and La Nina year. Similarly probabilities of normal, deficient, excess rainfall are found as 0.67, 0.18 and 0.15 respectively during mixed year. SOI has emerged as principal parameter which modifies the departure during El Nino and La Nina year. MEI along with ENSO strength  are more prominent  during  mixed year  particularly to ascertain deficient and excess rain in weak and strong- moderate La Nina  respectively .   


Sign in / Sign up

Export Citation Format

Share Document