Gravity Wave Generation around the Polar Vortex in the Stratosphere Revealed by 3-Hourly Radiosonde Observations at Syowa Station

2008 ◽  
Vol 65 (12) ◽  
pp. 3719-3735 ◽  
Author(s):  
Kaoru Sato ◽  
Motoyoshi Yoshiki

Abstract Intensive radiosonde observations were performed at Syowa Station (69.0°S, 39.6°E) over about 10 days in each of March, June, October, and December 2002 to examine inertia–gravity wave characteristics in the Antarctic lower stratosphere. Based on the 3-hourly observation data, two-dimensional (i.e., vertical wavenumber versus frequency) spectra of wind fluctuations were examined, utilizing a double Fourier transform method. Clear signals of gravity waves whose phases propagate upward, suggesting downward energy propagation, are detected in June and October when the polar night jet (PNJ) was present. On the other hand, downward phase propagation (i.e., upward energy propagation) components are dominant in all months. There is a spectral peak around the inertial frequency in a wide range of vertical wavenumbers in December when the background wind was weak, whereas large spectral densities are distributed over lower-frequency regions in June and October. These spectral characteristics are consistent with the results obtained using a gravity wave–resolving global circulation model (GCM) by Sato et al. Dynamical characteristics are examined separately for upward- and downward-propagating gravity waves in June, using a hodograph analysis method. As a result, it is found that upward- and downward-propagating wave packets observed simultaneously in the same height regions have similar horizontal wavelengths and phase velocities. This fact suggests that these gravity waves are generated from the same source with a similar mechanism. When the wave packets were observed, both the local Rossby number and the residual in the nonlinear balance equation estimated using NCEP–NCAR reanalysis data are large around the PNJ situated slightly to the lower latitudes of Syowa Station. Therefore, it is likely that the observed inertia–gravity waves are generated by a spontaneous adjustment around the geostrophically unbalanced PNJ and propagate toward Syowa Station. The possibility of spontaneous gravity wave generation around the PNJ is confirmed by comparison with the GCM simulation by Sato et al.

2015 ◽  
Vol 8 (7) ◽  
pp. 6797-6876 ◽  
Author(s):  
C. J. Wright ◽  
N. P. Hindley ◽  
A. C. Moss ◽  
N. J. Mitchell

Abstract. Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely-used gravity wave resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (MLS-Aura, HIRDLS and SABER), the COSMIC GPS-RO constellation, a ground-based meteor radar, the AIRS infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity wave packets from the lower troposphere to the edge of the lower thermosphere. Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor-radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other datasets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Except in spring, we see little dissipation of GWPE throughout the stratosphere and lower mesosphere. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such datasets in their full context, and reinforce the vital point that no one dataset can represent the whole spectrum of gravity waves in the terrestrial atmosphere.


2000 ◽  
Vol 18 (10) ◽  
pp. 1316-1324 ◽  
Author(s):  
S.-D. Zhang ◽  
F. Yi ◽  
J.-F. Wang

Abstract. By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


2016 ◽  
Vol 9 (3) ◽  
pp. 877-908 ◽  
Author(s):  
Corwin J. Wright ◽  
Neil P. Hindley ◽  
Andrew C. Moss ◽  
Nicholas J. Mitchell

Abstract. Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ∼  100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically  > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such data sets in their full context.


2008 ◽  
Vol 65 (2) ◽  
pp. 557-575 ◽  
Author(s):  
Hye-Yeong Chun ◽  
Hyun-Joo Choi ◽  
In-Sun Song

Abstract In the present study, the authors propose a way to include a nonlinear forcing effect on the momentum flux spectrum of convectively forced internal gravity waves using a nondimensional numerical model (NDM) in a two-dimensional framework. In NDM, the nonlinear forcing is represented by nonlinear advection terms multiplied by the nonlinearity factor (NF) of the thermally induced internal gravity waves for a given specified diabatic forcing. It was found that the magnitudes of the waves and resultant momentum flux above the specified forcing decrease with increasing NF due to cancellation between the two forcing mechanisms. Using the momentum flux spectrum obtained by the NDM simulations with various NFs, a scale factor for the momentum flux, normalized by the momentum flux induced by diabatic forcing alone, is formulated as a function of NF. Inclusion of the nonlinear forcing effect into current convective gravity wave drag (GWD) parameterizations, which consider diabatic forcing alone by multiplying the cloud-top momentum flux spectrum by the scale factor, is proposed. An updated convective GWD parameterization using the scale factor is implemented into the NCAR Whole Atmosphere Community Climate Model (WACCM). The 10-yr simulation results, compared with those by the original convective GWD parameterization considering diabatic forcing alone, showed that the magnitude of the zonal-mean cloud-top momentum flux is reduced for wide range of phase speed spectrum by about 10%, except in the middle latitude storm-track regions where the cloud-top momentum flux is amplified. The zonal drag forcing is determined largely by the wave propagation condition under the reduced magnitude of the cloud-top momentum flux, and its magnitude decreases in many regions, but there are several areas of increasing drag forcing, especially in the tropical upper mesosphere and lower thermosphere.


2007 ◽  
Vol 64 (5) ◽  
pp. 1509-1529 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Abstract In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region. Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.


2004 ◽  
Vol 4 (1) ◽  
pp. 1063-1090 ◽  
Author(s):  
M. J. Alexander ◽  
J. R. Holton

Abstract. It is commonly believed that cumulus convection preferentially generates gravity waves with tropospheric vertical wavelengths approximately twice the depth of the convective heating. Individual cumulonimbus, however, act as short term transient heat sources (duration 10 to 30 min). Gravity waves generated by such sources have broad frequency spectra and a wide range of vertical scales. The high-frequency components tend to have vertical wavelengths much greater than twice the depth of the heating. Such waves have large vertical group velocities, and are only observed for a short duration and at short horizontal distances from the convective source. At longer times and longer distances from the source the dominant wave components have short vertical wavelengths and much slower group velocities, and thus are more likely to be observed even though their contribution to the momentum flux in the upper stratosphere and mesosphere may be less than that of the high frequency waves. These properties of convectively generated waves are illustrated by a linear numerical model for the wave response to a specified transient heat source. The wave characteristics are documented through Fourier and Wavelet analysis, and implications for observing systems are discussed.


2015 ◽  
Vol 8 (11) ◽  
pp. 4645-4655 ◽  
Author(s):  
B. Ehard ◽  
B. Kaifler ◽  
N. Kaifler ◽  
M. Rapp

Abstract. This study evaluates commonly used methods of extracting gravity-wave-induced temperature perturbations from lidar measurements. The spectral response of these methods is characterized with the help of a synthetic data set with known temperature perturbations added to a realistic background temperature profile. The simulations are carried out with the background temperature being either constant or varying in time to evaluate the sensitivity to temperature perturbations not caused by gravity waves. The different methods are applied to lidar measurements over New Zealand, and the performance of the algorithms is evaluated. We find that the Butterworth filter performs best if gravity waves over a wide range of periods are to be extracted from lidar temperature measurements. The running mean method gives good results if only gravity waves with short periods are to be analyzed.


2006 ◽  
Vol 63 (12) ◽  
pp. 3253-3276 ◽  
Author(s):  
Christoph Zülicke ◽  
Dieter Peters

Poleward-breaking Rossby waves often induce an upper-level jet streak over northern Europe. Dominant inertia–gravity wave packets are observed downstream of this jet. The physical processes of their generation and propagation, in such a configuration, are investigated with a mesoscale model. The study is focused on an observational campaign from 17 to 19 December 1999 over northern Germany. Different simulations with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) have been performed. For a high-resolution process study, three domains were set up that encompass the evolution of Rossby waves and that of inertia–gravity waves. To minimize the impact of model damping, the horizontal and vertical resolution has been adjusted appropriately. With a novel statistical approach, the properties of inertia–gravity wave packets have been estimated. This method uses the horizontal divergence field and takes into account the spatial extension of a wave packet. It avoids the explicit treatment of the background field and works for arbitrary wavelength. Two classes of inertia–gravity waves were found: subsynoptic waves with a horizontal wavelength of about 500 km and mesoscale waves with a horizontal wavelength of about 200 km. The subsynoptic structures were also detected in radiosonde observations during this campaign. The similarity between simulated and observed wavelengths and amplitudes suggests that the simulations can be considered as near realistic. Spontaneous radiation from unbalanced flow is an important process of inertia–gravity wave generation. Synoptic-scale imbalances in the exit region of the upper-tropospheric jet streak were identified with the smoothed cross-stream Lagrangian Rossby number. In a number of simulations with different physics, it was found that the inertia–gravity wave activity was related to the tropospheric jet, orography, and moist convection. The upward propagation of inertia–gravity waves was favored during this event of a poleward-breaking Rossby wave. The presence of the polar vortex induced background winds exceeding the critical line. Consequently, the activity of inertia–gravity waves in the lower stratosphere increased by an order of magnitude during the case study. The successful simulation of the complex processes of generation and propagation showed the important role of poleward Rossby wave breaking for the appearance of inertia–gravity waves in the midlatitudes.


Sign in / Sign up

Export Citation Format

Share Document