scholarly journals Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements

2015 ◽  
Vol 8 (11) ◽  
pp. 4645-4655 ◽  
Author(s):  
B. Ehard ◽  
B. Kaifler ◽  
N. Kaifler ◽  
M. Rapp

Abstract. This study evaluates commonly used methods of extracting gravity-wave-induced temperature perturbations from lidar measurements. The spectral response of these methods is characterized with the help of a synthetic data set with known temperature perturbations added to a realistic background temperature profile. The simulations are carried out with the background temperature being either constant or varying in time to evaluate the sensitivity to temperature perturbations not caused by gravity waves. The different methods are applied to lidar measurements over New Zealand, and the performance of the algorithms is evaluated. We find that the Butterworth filter performs best if gravity waves over a wide range of periods are to be extracted from lidar temperature measurements. The running mean method gives good results if only gravity waves with short periods are to be analyzed.

2015 ◽  
Vol 8 (9) ◽  
pp. 9045-9074
Author(s):  
B. Ehard ◽  
B. Kaifler ◽  
N. Kaifler ◽  
M. Rapp

Abstract. This study evaluates commonly used methods of extracting gravity wave induced temperature perturbations from lidar measurements. The spectral response of these methods is characterized with the help of a synthetic dataset with known temperature perturbations added to a realistic background temperature profile. The simulations are carried out with the background temperature being either constant or varying in time to evaluate the sensitivity to temperature perturbations not caused by gravity waves. The different methods are applied to lidar measurements over new Zealand and the performance of the algorithms is evaluated. We find that the Butterworth filter performs best if gravity waves over a wide range of periods are to be extracted from lidar temperature measurements. The running mean method gives good results if only gravity waves with short periods are to be analyzed.


2005 ◽  
Vol 23 (3) ◽  
pp. 665-673 ◽  
Author(s):  
S. D. Zhang ◽  
F. Yi

Abstract. Several works concerning the dynamical and thermal structures and inertial gravity wave activities in the troposphere and lower stratosphere (TLS) from the radiosonde observation have been reported before, but these works were concentrated on either equatorial or polar regions. In this paper, background atmosphere and gravity wave activities in the TLS over Wuhan (30° N, 114° E) (a medium latitudinal region) were statistically studied by using the data from radiosonde observations on a twice daily basis at 08:00 and 20:00 LT in the period between 2000 and 2002. The monthly-averaged temperature and horizontal winds exhibit the essential dynamic and thermal structures of the background atmosphere. For avoiding the extreme values of background winds and temperature in the height range of 11-18km, we studied gravity waves, respectively, in two separate height regions, one is from ground surface to 10km (lower part), and the other is within 18-25km (upper part). In total, 791 and 1165 quasi-monochromatic inertial gravity waves were extracted from our data set for the lower and upper parts, respectively. The gravity wave parameters (intrinsic frequencies, amplitudes, wavelengths, intrinsic phase velocities and wave energies) are calculated and statistically studied. The statistical results revealed that in the lower part, there were 49.4% of gravity waves propagating upward, and the percentage was 76.4% in the upper part. Moreover, the average wave amplitudes and energies are less than those at the lower latitudinal regions, which indicates that the gravity wave parameters have a latitudinal dependence. The correlated temporal evolution of the monthly-averaged wave energies in the lower and upper parts and a subsequent quantitative analysis strongly suggested that at the observation site, dynamical instability (strong wind shear) induced by the tropospheric jet is the main excitation source of inertial gravity waves in the TLS.


2008 ◽  
Vol 65 (2) ◽  
pp. 557-575 ◽  
Author(s):  
Hye-Yeong Chun ◽  
Hyun-Joo Choi ◽  
In-Sun Song

Abstract In the present study, the authors propose a way to include a nonlinear forcing effect on the momentum flux spectrum of convectively forced internal gravity waves using a nondimensional numerical model (NDM) in a two-dimensional framework. In NDM, the nonlinear forcing is represented by nonlinear advection terms multiplied by the nonlinearity factor (NF) of the thermally induced internal gravity waves for a given specified diabatic forcing. It was found that the magnitudes of the waves and resultant momentum flux above the specified forcing decrease with increasing NF due to cancellation between the two forcing mechanisms. Using the momentum flux spectrum obtained by the NDM simulations with various NFs, a scale factor for the momentum flux, normalized by the momentum flux induced by diabatic forcing alone, is formulated as a function of NF. Inclusion of the nonlinear forcing effect into current convective gravity wave drag (GWD) parameterizations, which consider diabatic forcing alone by multiplying the cloud-top momentum flux spectrum by the scale factor, is proposed. An updated convective GWD parameterization using the scale factor is implemented into the NCAR Whole Atmosphere Community Climate Model (WACCM). The 10-yr simulation results, compared with those by the original convective GWD parameterization considering diabatic forcing alone, showed that the magnitude of the zonal-mean cloud-top momentum flux is reduced for wide range of phase speed spectrum by about 10%, except in the middle latitude storm-track regions where the cloud-top momentum flux is amplified. The zonal drag forcing is determined largely by the wave propagation condition under the reduced magnitude of the cloud-top momentum flux, and its magnitude decreases in many regions, but there are several areas of increasing drag forcing, especially in the tropical upper mesosphere and lower thermosphere.


2007 ◽  
Vol 64 (5) ◽  
pp. 1509-1529 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Abstract In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region. Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.


2020 ◽  
Vol 13 (2) ◽  
pp. 479-499
Author(s):  
Irina Strelnikova ◽  
Gerd Baumgarten ◽  
Franz-Josef Lübken

Abstract. An advanced hodograph-based analysis technique to derive gravity-wave (GW) parameters from observations of temperature and winds is developed and presented as a step-by-step recipe with justification for every step in such an analysis. As the most adequate background removal technique the 2-D FFT is suggested. For an unbiased analysis of fluctuation whose amplitude grows with height exponentially, we propose applying a scaling function of the form exp (z∕(ςH)), where H is scale height, z is altitude, and the constant ς can be derived by a linear fit to the fluctuation profile and should be in the range 1–10. The most essential part of the proposed analysis technique consists of fitting cosine waves to simultaneously measured profiles of zonal and meridional winds and temperature and subsequent hodograph analysis of these fitted waves. The linear wave theory applied in this analysis is extended by introducing a wave packet envelope term exp⁡(-(z-z0)2/2σ2) that accounts for limited extent of GWs in the observational data set. The novelty of our approach is that its robustness ultimately allows for automation of the hodograph analysis and resolves many more GWs than can be inferred by the manually applied hodograph technique. This technique allows us to unambiguously identify upward- and downward-propagating GWs and their parameters. This technique is applied to unique lidar measurements of temperature and horizontal winds measured in an altitude range of 30 to 70 km.


2008 ◽  
Vol 8 (22) ◽  
pp. 6775-6787 ◽  
Author(s):  
M. Rauthe ◽  
M. Gerding ◽  
F.-J. Lübken

Abstract. More than 230 nights of temperature measurements between 1 and 105 km have been performed at the Leibniz-Institute of Atmospheric Physics in Kühlungsborn with a combination of two different lidars, i.e. a Rayleigh-Mie-Raman lidar and a potassium lidar. About 1700 h of measurements have been collected between 2002 and 2006. Apart from some gaps due to the adverse weather conditions the measurements are well distributed throughout the year. Comprehensive information about the activity of medium- and low-frequency gravity waves was extracted from this data set. The dominating vertical wavelengths found are between 10 and 20 km and do not show any seasonal variation. In contrast the temperature fluctuations due to gravity waves experience a clear annual cycle with a maximum in winter. The most significant differences exist around 60 km where the fluctuations in winter are more than two times larger than they are in summer. Only small seasonal differences are observed above 90 km and below 35 km. Generally, the fluctuations grow from about 0.5 K up to 8 K between 20 and 100 km. Damping of waves is observed at nearly all altitudes and in all seasons. The planetary wave activity shows a similar structure in altitude and season as the gravity wave activity which indicates that similar mechanisms influencing different scales. Combining the monthly mean temperatures and the fluctuations we show that the transition between winter and summer season and vice versa seems to start in the mesopause region and to penetrate downward.


2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


2008 ◽  
Vol 8 (4) ◽  
pp. 13741-13773 ◽  
Author(s):  
M. Rauthe ◽  
M. Gerding ◽  
F.-J. Lübken

Abstract. More than 230 nights of temperature measurements between 1 and 105 km have been performed at the Leibniz-Institute of Atmospheric Physics in Kühlungsborn with a combination of two different lidars, i.e. a Rayleigh-Mie-Raman lidar and a potassium lidar. About 1700 h of measurements have been collected between 2002 and 2006. Apart from some gaps due to the adverse weather conditions the measurements are well distributed throughout the year. Comprehensive information about the activity of medium- and low-frequency gravity waves was extracted from this data set. The dominating vertical wavelengths found are between 10 and 20 km and do not show any seasonal variation. In contrast the temperature fluctuations due to gravity waves experience a clear annual cycle with a maximum in winter. The most significant differences exist around 60 km where the fluctuations in winter are more than two times larger than they are in summer. Only small seasonal differences are observed above 90 km and below 35 km. Generally, the fluctuations grow from about 0.5 K up to 8 K between 20 and 100 km. Damping of waves is observed at nearly all altitudes and in all seasons. The planetary wave activity shows a similar structure in altitude and season as the gravity wave activity which indicates a strong coupling between the processes of the different scales. Combining the monthly mean temperatures and the fluctuations we show that the transition between winter and summer season and vice versa seems to start in the mesopause region and to penetrate downward.


2017 ◽  
Vol 74 (11) ◽  
pp. 3551-3566 ◽  
Author(s):  
Jacob P. Edman ◽  
David M. Romps

Abstract The baroclinic-mode decomposition is a fixture of the tropical-dynamics literature because of its simplicity and apparent usefulness in understanding a wide range of atmospheric phenomena. However, its derivation relies on the assumption that the tropopause is a rigid lid that artificially restricts the vertical propagation of wave energy. This causes tropospheric buoyancy anomalies of a single vertical mode to remain coherent for all time in the absence of dissipation. Here, the authors derive the Green’s functions for these baroclinic modes in a two-dimensional troposphere (or, equivalently, a three-dimensional troposphere with one translational symmetry) that is overlain by a stratosphere. These Green’s functions quantify the propagation and spreading of gravity waves generated by a horizontally localized heating, and they can be used to reconstruct the evolution of any tropospheric heating. For a first-baroclinic two-dimensional right-moving or left-moving gravity wave with a characteristic width of 100 km, its initial horizontal shape becomes unrecognizable after 4 h, at which point its initial amplitude has also been reduced by a factor of 1/π. After this time, the gravity wave assumes a universal shape that widens linearly in time. For gravity waves on a periodic domain the length of Earth’s circumference, it takes only 10 days for the gravity waves to spread their buoyancy throughout the entire domain.


2014 ◽  
Vol 32 (11) ◽  
pp. 1395-1405 ◽  
Author(s):  
B. Ehard ◽  
P. Achtert ◽  
J. Gumbel

Abstract. This paper presents an analysis of gravity wave activity over northern Sweden as deduced from 18 years of wintertime lidar measurements at Esrange (68° N, 21° E). Gravity wave potential energy density (GWPED) was used to characterize the strength of gravity waves in the altitude regions 30–40 km and 40–50 km. The obtained values exceed previous observations reported in the literature. This is suggested to be due to Esrange's location downwind of the Scandinavian mountain range and due to differences in the various methods that are currently used to retrieve gravity wave parameters. The analysis method restricted the identification of the dominating vertical wavelengths to a range from 2 to 13 km. No preference was found for any wavelength in this window. Monthly mean values of GWPED show that most of the gravity waves' energy dissipates well below the stratopause and that higher altitude regions show only small dissipation rates of GWPED. Our analysis does not reproduce the previously reported negative trend in gravity wave activity over Esrange. The observed inter-annual variability of GWPED is connected to the occurrence of stratospheric warmings with generally lower wintertime mean GWPED during years with major stratospheric warmings. A bimodal GWPED occurrence frequency indicates that gravity wave activity at Esrange is affected by both ubiquitous wave sources and orographic forcing.


Sign in / Sign up

Export Citation Format

Share Document