scholarly journals On the spectrum of vertically propagating gravity waves generated by a transient heat source

2004 ◽  
Vol 4 (1) ◽  
pp. 1063-1090 ◽  
Author(s):  
M. J. Alexander ◽  
J. R. Holton

Abstract. It is commonly believed that cumulus convection preferentially generates gravity waves with tropospheric vertical wavelengths approximately twice the depth of the convective heating. Individual cumulonimbus, however, act as short term transient heat sources (duration 10 to 30 min). Gravity waves generated by such sources have broad frequency spectra and a wide range of vertical scales. The high-frequency components tend to have vertical wavelengths much greater than twice the depth of the heating. Such waves have large vertical group velocities, and are only observed for a short duration and at short horizontal distances from the convective source. At longer times and longer distances from the source the dominant wave components have short vertical wavelengths and much slower group velocities, and thus are more likely to be observed even though their contribution to the momentum flux in the upper stratosphere and mesosphere may be less than that of the high frequency waves. These properties of convectively generated waves are illustrated by a linear numerical model for the wave response to a specified transient heat source. The wave characteristics are documented through Fourier and Wavelet analysis, and implications for observing systems are discussed.

2004 ◽  
Vol 4 (4) ◽  
pp. 923-932 ◽  
Author(s):  
M. J. Alexander ◽  
J. R. Holton

Abstract. It is commonly believed that cumulus convection preferentially generates gravity waves with tropospheric vertical wavelengths approximately twice the depth of the convective heating. Individual cumulonimbus, however, act as short term transient heat sources (duration 10 to 30min). Gravity waves generated by such sources have broad frequency spectra and a wide range of vertical scales. The high-frequency components tend to have vertical wavelengths much greater than twice the depth of the heating. Such waves have large vertical group velocities, and are only observed for a short duration and at short horizontal distances from the convective source. At longer times and longer distances from the source the dominant wave components have short vertical wavelengths and much slower group velocities, and thus are more likely to be observed even though their contribution to the momentum flux in the upper stratosphere and mesosphere may be less than that of the high frequency waves. These properties of convectively generated waves are illustrated by a linear numerical model for the wave response to a specified transient heat source. The wave characteristics are documented through Fourier and Wavelet analysis, and implications for observing systems are discussed.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. O55-O66 ◽  
Author(s):  
Yanting Duan ◽  
Chaodong Wu ◽  
Xiaodong Zheng ◽  
Yucheng Huang ◽  
Jian Ma

The eigenstructure-based coherence attribute is a type of efficient and mature tool for mapping geologic edges such as faults and/or channels in the 3D seismic interpretation. However, the eigenstructure-based coherence algorithm is sensitive to low signal-to-noise ratio seismic data, and the coherence results are affected by the dipping structures. Due to the large energy gap between the low- and high-frequency components, the low-frequency components play the principal role in coherence estimation. In contrast, the spectral variance balances the difference between the low- and high-frequency components at a fixed depth. The coherence estimation based on amplitude spectra avoids the effect of the time delays resulting from the dipping structures. Combining the spectral variance with the amplitude spectra avoids the effect of dipping structures and enhances the antinoise performance of the high-frequency components. First, we apply the short-time Fourier transform to obtain the time-frequency spectra of seismic data. Next, we compute the variance values of amplitude spectra. Then, we apply the fast Fourier transform to obtain the amplitude spectra of spectral variance. Finally, we calculate the eigenstructure coherence by using the amplitude spectra of spectral variance as the input. We apply the method to the theoretical models and practical seismic data. In the Marmousi velocity model, the coherence estimation using the amplitude spectra of the spectral variance as input shows more subtle discontinuities, especially in deeper layers. The results from field-data examples demonstrate that the proposed method is helpful for mapping faults and for improving the narrow channel edges’ resolution of interest. Therefore, the coherence algorithm based on the spectral variance analysis may be conducive to the seismic interpretation.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Mathieu Gauvin ◽  
Allison L. Dorfman ◽  
Nataly Trang ◽  
Mercedes Gauthier ◽  
John M. Little ◽  
...  

The electroretinogram (ERG) is composed of slow (i.e., a-, b-waves) and fast (i.e., oscillatory potentials: OPs) components. OPs have been shown to be preferably affected in some diseases (such as diabetic retinopathy), while the a- and b-waves remain relatively intact. The purpose of this study was to determine the contribution of OPs to the building of the ERG and to examine whether a signal mostly composed of OPs could also exist. DWT analyses were performed on photopic ERGs (flash intensities: −2.23 to 2.64 log cd·s·m−2in 21 steps) obtained from normal subjects (n=40) and patients (n=21) affected with a retinopathy. In controls, the %OP value (i.e., OPs energy/ERG energy) is stimulus- and amplitude-independent (range: 56.6–61.6%; CV = 6.3%). In contrast, the %OPs measured from the ERGs of our patients varied significantly more (range: 35.4%–89.2%;p<0.05) depending on the pathology, some presenting with ERGs that are almost solely composed of OPs. In conclusion, patients may present with a wide range of %OP values. Findings herein also support the hypothesis that, in certain conditions, the photopic ERG can be mostly composed of high-frequency components.


2019 ◽  
Vol 76 (8) ◽  
pp. 2575-2597 ◽  
Author(s):  
Rebecca C. Evans ◽  
David S. Nolan

Abstract The diurnal cycle (DC) in the cirrus canopy of tropical cyclones (TCs) is a well-documented phenomenon. While early studies linked the DC in the area of the cirrus canopy to a DC in the strength of eyewall convection, later studies considered it a direct response to the DC of radiation in the cirrus canopy. In this study, an idealized linear model is used to examine the extent to which linear dynamics can capture the DC in TCs, in particular the transition between balanced and radiating responses to diurnal heating. The model heat forcing is physically motivated by the diabatic heating output from a realistic simulation, which illustrates the presence of a DC in moist convective heating and radiative heating in the eyewall, and a DC in radiative heating in the cirrus canopy. This study finds that the DCs of heating in the eyewall yield a response that is restricted to inside the RMW by the high inertial stability in the inner core. The DC of radiative heating in the cirrus canopy yields a response throughout the entire cyclone. Lower-frequency responses, of diurnal and semidiurnal frequency, are balanced throughout much of the cyclone. High-frequency waves with periods under 8 h, created at sunrise and sunset, can radiate outward and downward. These results indicate that diurnal responses are balanced in the majority of a TC and originate in the cirrus canopy, instead of the eyewall. The DC in cirrus canopy vertical motion also appears to originate in the cirrus canopy.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Manuel Kindelan ◽  
Miguel Moscoso ◽  
Pedro Gonzalez-Rodriguez

We present a method to obtain optimal finite difference formulas which maximize their frequency range of validity. The optimization is based on the idea of keeping an error of interest (dispersion, phase, or group velocities errors) below a given threshold for a wavenumber interval as large as possible. To find the weights of these optimal finite difference formulas we solve a system of nonlinear equations. Furthermore, we give compact formulas for the optimal weights as function of the error bound. Several numerical experiments illustrate the performance of the obtained finite difference formulas compared to the standard ones.


1988 ◽  
Vol 78 (2) ◽  
pp. 692-707
Author(s):  
S. E. Hough ◽  
J. G. Anderson

Abstract Data from the Anza array in southern California have been analyzed to yield a model for the depth dependence of attenuation. The result is obtained from a formal inversion of the distance dependence of the spectral decay parameter, κ, observed from sources at a wide range of distances from single stations. The inversion procedure assumes constant Qi in plane layers and finds models which are as nearly constant with depth as possible. We find that the data cannot be explained by a model in which Qi is constant with depth and that the data generally require three-layer models. The resulting models typically give Qi for P waves between 300 and 1000 in the top 5 km, rising to 1000 to 3000 at greater depths, and decreasing to 700 to 1000 around 12 km depth. Qi for S waves is slightly higher in most cases. Because this depth dependence of Qi is generally correlated with the depths of earthquake epicenters, we suggest that Qi may be due to a pressure and temperature-controlled intrinsic attenuation mechanism.


1973 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
J. Preinhaelter ◽  
V. Kopecký

Propagation of high-frequency electromagnetic waves in a weakly inhomogeneous magnetized plasma is investigated. We suppose the density gradient to be perpendicular to an external magnetic field, and the waves to be incident obliquely upon the plasma from vacuum. We find that the transmission coefficient of the ordinary wave through the plasma resonance is approximately equal to one in a fairly wide range of angles of incidence γ near the value γ0 = arcsin (Ωc/)(Ωo + Ω) ½. The transmitted ordinary wave is fully transformed into an extraordinary wave at higher densities. Then it propagates back to the region of a smaller density, and is fully transformed into the Bernstein modes in the vicinity of the hybrid resonance. Complications connected with the evanescent layer, which arise when the high-frequency energy is transmitted into the plasma in the form of the extraordinary wave, can thus be removed by using the ordinary wave with the angle of incidence chosen appropriately.


2008 ◽  
Vol 65 (12) ◽  
pp. 3719-3735 ◽  
Author(s):  
Kaoru Sato ◽  
Motoyoshi Yoshiki

Abstract Intensive radiosonde observations were performed at Syowa Station (69.0°S, 39.6°E) over about 10 days in each of March, June, October, and December 2002 to examine inertia–gravity wave characteristics in the Antarctic lower stratosphere. Based on the 3-hourly observation data, two-dimensional (i.e., vertical wavenumber versus frequency) spectra of wind fluctuations were examined, utilizing a double Fourier transform method. Clear signals of gravity waves whose phases propagate upward, suggesting downward energy propagation, are detected in June and October when the polar night jet (PNJ) was present. On the other hand, downward phase propagation (i.e., upward energy propagation) components are dominant in all months. There is a spectral peak around the inertial frequency in a wide range of vertical wavenumbers in December when the background wind was weak, whereas large spectral densities are distributed over lower-frequency regions in June and October. These spectral characteristics are consistent with the results obtained using a gravity wave–resolving global circulation model (GCM) by Sato et al. Dynamical characteristics are examined separately for upward- and downward-propagating gravity waves in June, using a hodograph analysis method. As a result, it is found that upward- and downward-propagating wave packets observed simultaneously in the same height regions have similar horizontal wavelengths and phase velocities. This fact suggests that these gravity waves are generated from the same source with a similar mechanism. When the wave packets were observed, both the local Rossby number and the residual in the nonlinear balance equation estimated using NCEP–NCAR reanalysis data are large around the PNJ situated slightly to the lower latitudes of Syowa Station. Therefore, it is likely that the observed inertia–gravity waves are generated by a spontaneous adjustment around the geostrophically unbalanced PNJ and propagate toward Syowa Station. The possibility of spontaneous gravity wave generation around the PNJ is confirmed by comparison with the GCM simulation by Sato et al.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


Sign in / Sign up

Export Citation Format

Share Document