The Summer North Atlantic Oscillation: Past, Present, and Future

2009 ◽  
Vol 22 (5) ◽  
pp. 1082-1103 ◽  
Author(s):  
Chris K. Folland ◽  
Jeff Knight ◽  
Hans W. Linderholm ◽  
David Fereday ◽  
Sarah Ineson ◽  
...  

Abstract Summer climate in the North Atlantic–European sector possesses a principal pattern of year-to-year variability that is the parallel to the well-known North Atlantic Oscillation in winter. This summer North Atlantic Oscillation (SNAO) is defined here as the first empirical orthogonal function (EOF) of observed summertime extratropical North Atlantic pressure at mean sea level. It is shown to be characterized by a more northerly location and smaller spatial scale than its winter counterpart. The SNAO is also detected by cluster analysis and has a near-equivalent barotropic structure on daily and monthly time scales. Although of lesser amplitude than its wintertime counterpart, the SNAO exerts a strong influence on northern European rainfall, temperature, and cloudiness through changes in the position of the North Atlantic storm track. It is, therefore, of key importance in generating summer climate extremes, including flooding, drought, and heat stress in northwestern Europe. The El Niño–Southern Oscillation (ENSO) phenomenon is known to influence summertime European climate; however, interannual variations of the SNAO are only weakly influenced by ENSO. On interdecadal time scales, both modeling and observational results indicate that SNAO variations are partly related to the Atlantic multidecadal oscillation. It is shown that SNAO variations extend far back in time, as evidenced by reconstructions of SNAO variations back to 1706 using tree-ring records. Very long instrumental records, such as central England temperature, are used to validate the reconstruction. Finally, two climate models are shown to simulate the present-day SNAO and predict a trend toward a more positive index phase in the future under increasing greenhouse gas concentrations. This implies the long-term likelihood of increased summer drought for northwestern Europe.

2012 ◽  
Vol 69 (12) ◽  
pp. 3763-3787 ◽  
Author(s):  
Dehai Luo ◽  
Jing Cha

Abstract In this paper, precursors to the North Atlantic Oscillation (NAO) and its transitions are investigated to understand the dynamical cause of the interdecadal NAO variability from dominant negative (NAO−) events during 1950–77 (P1) to dominant positive (NAO+) events during 1978–2010 (P2). It is found that the phase of the NAO event depends strongly on the latitudinal position of the North Atlantic jet (NAJ) prior to the NAO onset. The NAO− (NAO+) events occur frequently when the NAJ core prior to the NAO onset is displaced southward (northward), as the situation within P1 (P2). Thus, the northward (southward) shift of the NAJ from its mean position is a precursor to the NAO+ (NAO−) event. This finding is further supported by results obtained from a weakly nonlinear model. Furthermore, the model results show that, when the Atlantic mean zonal wind exceeds a critical strength under which the dipole anomaly prior to the NAO onset is stationary, in situ NAO− (NAO+) events, which are events not preceded by opposite events, can occur frequently during P1 (P2) when the Atlantic storm track is not too strong. This mean zonal wind condition is easily satisfied during P1 and P2. However, when the Atlantic storm track (mean zonal wind) prior to the NAO onset is markedly intensified (weakened), the NAO event can undergo a transition from one phase to another, especially in a relatively strong background westerly wind, the Atlantic storm track has to be strong enough to produce a phase transition.


2013 ◽  
Vol 141 (11) ◽  
pp. 3801-3813 ◽  
Author(s):  
Anna Maidens ◽  
Alberto Arribas ◽  
Adam A. Scaife ◽  
Craig MacLachlan ◽  
Drew Peterson ◽  
...  

Abstract December 2010 was unusual both in the strength of the negative North Atlantic Oscillation (NAO) intense atmospheric blocking and the associated record-breaking low temperatures over much of northern Europe. The negative North Atlantic Oscillation for November–January was predicted in October by 8 out of 11 World Meteorological Organization Global Producing Centres (WMO GPCs) of long-range forecasts. This paper examines whether the unusual strength of the NAO and temperature anomaly signals in early winter 2010 are attributable to slowly varying boundary conditions [El Niño–Southern Oscillation state, North Atlantic sea surface temperature (SST) tripole, Arctic sea ice extent, autumn Eurasian snow cover], and whether these were modeled in the Met Office Global Seasonal Forecasting System version 4 (GloSea4). Results from the real-time forecasts showed that a very robust signal was evident in both the surface pressure fields and temperature fields by the beginning of November. The historical reforecast set (hindcasts), used to calibrate and bias correct the real-time forecast, showed that the seasonal forecast model reproduces at least some of the observed physical mechanisms that drive the NAO. A series of ensembles of atmosphere-only experiments was constructed, using forecast SSTs and ice concentrations from November 2010. Each potential mechanism in turn was systematically isolated and removed, leading to the conclusion that the main mechanism responsible for the successful forecast of December 2010 was anomalous ocean heat content and associated SST anomalies in the North Atlantic.


2004 ◽  
Vol 34 (12) ◽  
pp. 2615-2629 ◽  
Author(s):  
Thierry Penduff ◽  
Bernard Barnier ◽  
W. K. Dewar ◽  
James J. O'Brien

Abstract Observational studies have shown that in many regions of the World Ocean the eddy kinetic energy (EKE) significantly varies on interannual time scales. Comparing altimeter-derived EKE maps for 1993 and 1996, Stammer and Wunsch have mentioned a significant meridional redistribution of EKE in the North Atlantic Ocean and suggested the possible influence of the North Atlantic Oscillation (NAO) cycle. This hypothesis is examined using 7 yr of Ocean Topography Experiment (TOPEX)/Poseidon altimeter data and three ⅙°-resolution Atlantic Ocean model simulations performed over the period 1979–2000 during the French “CLIPPER” experiment. The subpolar–subtropical meridional contrast of EKE in the real ocean appears to vary on interannual time scales, and the model reproduces it realistically. The NAO cycle forces the meridional contrast of energy input by the wind. The analysis in this paper suggests that after 1993 the large amplitude of the NAO cycle induces changes in the transport of the baroclinically unstable large-scale circulation (Gulf Stream/North Atlantic Current) and, thus, changes in the EKE distribution. Model results suggest that NAO-like fluctuations were not followed by EKE redistributions before 1994, probably because NAO oscillations were weaker. Strong NAO events after 1994 were followed by gyre-scale EKE fluctuations with a 4–12-month lag, suggesting that complex, nonlinear adjustment processes are involved in this oceanic adjustment.


2017 ◽  
Vol 17 (2) ◽  
pp. 124-144 ◽  
Author(s):  
Zeineddine Nouaceur ◽  
Ovidiu Murărescu ◽  
George Murătoreanu

AbstractThe IPCC climate models predict, for the Central Europe, are for climate changes, being seen variability of temperature, with a growing trend of 1-2,5° C (with 1° C for alpine zone – Carpathians and 2-2,5° C for plains). Current observations in the Romanian plain are not consistent, with an existence of a multiannual variability of temperature and precipitations depending on cyclonal and anti-ciclonal activity. The research is based on calculation of reduced centered index, also the graphical chronological method in information processing (MGCTI) of „Bertin Matrix” type, to show current trends of the spatio-temporal variability of precipitation in the context of global climate change. These are in line with the movement of air masses in Europe in general, and implicitly in Romania, with particular regard to the southern region of the country where the Romanian Plain. The variability of short-term global climate is generally associated with coupling phases of oceanic and atmospheric phenomena including El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). While El Niño Southern Oscillation (ENSO) affects climate variability in the world, the North Atlantic Oscillation (NAO) is the climate model dominant in the North Atlantic region. The latter cyclic oscillation whose role is still under debate could explain the variability of rainfall in much of the, central Europe area, and support the hypothesis of a return of the rains marking the end of years of drought in Romanian plain. Faced with such great changes that today affect the central Europe region and given the complexity of spatial and temporal dimensions of the climatic signal, a more thorough research of causes and retroactions would allow for a better understanding of the mechanisms behind this new trend.


2005 ◽  
Vol 18 (23) ◽  
pp. 4955-4969 ◽  
Author(s):  
Fabio D’Andrea ◽  
Arnaud Czaja ◽  
John Marshall

Abstract Coupled atmosphere–ocean dynamics in the North Atlantic is studied by means of a simple model, featuring a baroclinic three-dimensional atmosphere coupled to a slab ocean. Anomalous oceanic heat transport due to wind-driven circulation is parameterized in terms of a delayed response to the change in wind stress curl due to the North Atlantic Oscillation (NAO). Climate variability for different strengths of ocean heat transport efficiency is analyzed. Two types of behavior are found depending on time scale. At interdecadal and longer time scales, a negative feedback is found that leads to a reduction in the spectral power of the NAO. By greatly increasing the efficiency of ocean heat transport, the NAO in the model can be made to completely vanish from the principal modes of variability at low frequency. This suggests that the observed NAO variability at these time scales must be due to mechanisms other than the interaction with wind-driven circulation. At decadal time scales, a coupled oscillation is found in which SST and geopotential height fields covary.


2020 ◽  
Author(s):  
Julien Chartrand ◽  
Francesco Salvatore Rocco Pausata

Abstract. The North Atlantic Oscillation (NAO) affects atmospheric variability from eastern North America to Europe. Although the link between the NAO and winter precipitations in the eastern North America have been the focus of previous work, only few studies have hitherto provided clear physical explanations on these relationships. In this study we revisit and extend the analysis of the effect of the NAO on winter precipitations over a large domain covering southeast Canada and the northeastern United States. Furthermore, here we use the recent ERA5 reanalysis dataset (1979–2018), which currently has the highest available horizontal resolution for a global reanalysis (0.25°), to track extratropical cyclones to delve into the physical processes behind the relationship between NAO and precipitation, snowfall, snowfall-to-precipitation ratio (S/P), and snow cover depth anomalies in the region. In particular, our results show that positive NAO phases are associated with less snowfall over a wide region covering Nova Scotia, New England and the Mid-Atlantic of the United States relative to negative NAO phases. Henceforth, a significant negative correlation is also seen between S/P and the NAO over this region. This is due to a decrease (increase) in cyclogenesis of coastal storms near the United States east coast during positive (negative) NAO phases, as well as a northward (southward) displacement of the mean storm track over North America.


2014 ◽  
Vol 14 (14) ◽  
pp. 21065-21099
Author(s):  
I. Petropavlovskikh ◽  
R. Evans ◽  
G. McConville ◽  
G. L. Manney ◽  
H. E. Rieder

Abstract. Continuous measurements of total ozone (by Dobson spectrophotometers) across the contiguous United States (US) began in the early 1960s. Here, we analyze temporal and spatial variability and trends in total ozone from the five US sites with long-term records. While similar long-term ozone changes are detected at all five sites, we find differences in the patterns of ozone variability on shorter time scales. In addition to standard evaluation techniques, STL-decomposition methods (Seasonal Trend decomposition of time series based on LOcally wEighted Scatterplot Smoothing, LOESS) are used to address temporal variability and trends in the Dobson data. The LOESS-smoothed trend components show a decline of total ozone between the 1970s and 2000s and a "stabilization" at lower levels in recent years, which is also confirmed by linear trend analysis. Methods from statistical extreme value theory (EVT) are used to characterize days with high and low total ozone (termed EHOs and ELOs, respectively) at each station and to analyze temporal changes in the frequency of ozone extremes and their relationship to dynamical features such as the North Atlantic Oscillation and El Niño Southern Oscillation. A comparison of the "fingerprints" detected in the frequency distribution of the extremes with those for standard metrics (i.e., the mean) shows that more "fingerprints" are found for the extremes, particularly for the positive phase of the NAO, at all five US monitoring sites. Results from the STL-decomposition support the findings of the EVT analysis. Finally, we analyze the relative influence of low and high ozone events on seasonal mean column ozone at each station. The results show that the influence of ELOs and EHOs on seasonal mean column ozone can be as much as ±5%, or about twice as large as the overall long-term decadal ozone trends.


Sign in / Sign up

Export Citation Format

Share Document