scholarly journals Ten Years of TRMM/VIRS On-Orbit Calibrations and Multiyear Comparisons of VIRS and MODIS

2008 ◽  
Vol 25 (12) ◽  
pp. 2259-2270 ◽  
Author(s):  
Cheng-Hsuan Lyu ◽  
William L. Barnes

Abstract After 10 years of successful operation of the Tropical Rainfall Measuring Mission (TRMM)/Visible Infrared Scanner (VIRS), based on sensor performance, the authors have reexamined the calibration algorithms and identified several ways to improve the current VIRS level-1B radiometric calibration software. This study examines the trends in VIRS on-orbit calibration results by using lunar measurements to enable separation of the solar diffuser degradation from that of the VIRS Earth-viewing sensor and by comparing the radiometric data with two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the NASA Earth Observing System (EOS) Terra and Aqua satellites. For the VIRS, with spectral bands quite similar to several of the MODIS bands, the integrated lunar reflectance data were measured, from January 1998 to March 2007, at phase angles ranging from 0.94° to 121.8°. The authors present trending of the lunar data over periods of 4 yr (Aqua/MODIS), 6 yr (Terra/MODIS), and 10 yr (TRMM/VIRS) and use these observations to examine instrument radiometric stability. The VIRS-measured lunar irradiances are compared with the MODIS-measured lunar irradiances at phase angles around 54°–56°. With the upcoming modified VIRS level-1B version 7 calibration algorithm, the VIRS, along with MODIS, should provide better references for intercalibrating multiple Earth-observing sensors.

2005 ◽  
Vol 22 (4) ◽  
pp. 338-351 ◽  
Author(s):  
Norman G. Loeb ◽  
Seiji Kato ◽  
Konstantin Loukachine ◽  
Natividad Manalo-Smith

Abstract The Clouds and Earth’s Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the understanding and modeling of the interaction between clouds, aerosols, and radiation at the top of the atmosphere, surface, and within the atmosphere. This paper describes the approach used to estimate top-of-atmosphere (TOA) radiative fluxes from instantaneous CERES radiance measurements on the Terra satellite. A key component involves the development of empirical angular distribution models (ADMs) that account for the angular dependence of the earth’s radiation field at the TOA. The CERES Terra ADMs are developed using 24 months of CERES radiances, coincident cloud and aerosol retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from the Global Modeling and Assimilation Office (GMAO)’s Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) V4.0.3 product. Scene information for the ADMs is from MODIS retrievals and GEOS DAS V4.0.3 properties over the ocean, land, desert, and snow for both clear and cloudy conditions. Because the CERES Terra ADMs are global, and far more CERES data are available on Terra than were available from CERES on the Tropical Rainfall Measuring Mission (TRMM), the methodology used to define CERES Terra ADMs is different in many respects from that used to develop CERES TRMM ADMs, particularly over snow/sea ice, under cloudy conditions, and for clear scenes over land and desert.


2015 ◽  
Vol 72 (5) ◽  
pp. 1932-1944 ◽  
Author(s):  
Katrina S. Virts ◽  
Robert A. Houze

Abstract Characteristics of mesoscale convective systems (MCSs) in regions affected by the Madden–Julian oscillation (MJO) are investigated using a database of MCSs observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Lightning occurrence detected by the World-Wide Lightning Location Network (WWLLN) is composited in a framework centered on the MCSs. During MJO active periods, MCSs are more numerous and larger, as the convective features persist and attain greater horizontal scales. Anomalies of the lifted index, derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) fields, indicate that MCS environments are more stable during MJO active periods. Over the Indian Ocean, Maritime Continent, and western Pacific, lightning density in an MCS maximizes during the time that the total number of systems begins to increase as the MJO is beginning to be more active, implying both more vigorous convection and less extensive stratiform rain areas at this transitional time of the MJO. The peak in MJO precipitation coincides with peak occurrence of interconnected MCSs with larger stratiform rain fraction, shown by the Tropical Rainfall Measuring Mission satellite, while composites of lightning frequency show that during MJO active periods the zone of lightning is contracted around the centers of MCSs, and flashes are less frequent.


2020 ◽  
Vol 13 (3) ◽  
pp. 1387-1412
Author(s):  
Jonas Witthuhn ◽  
Anja Hünerbein ◽  
Hartwig Deneke

Abstract. Reliable reference measurements over the ocean are essential for the evaluation and improvement of satellite- and model-based aerosol datasets. Within the framework of the Maritime Aerosol Network, shipborne reference datasets have been collected over the Atlantic Ocean since 2004 with Microtops Sun photometers. These were recently complemented by measurements with the multi-spectral GUVis-3511 shadowband radiometer during five cruises with the research vessel Polarstern. The aerosol optical depth (AOD) uncertainty estimate of both shipborne instruments of ±0.02 can be confirmed if the GUVis instrument is cross calibrated to the Microtops instrument to account for differences in calibration, and if an empirical correction to account for the broad shadowband as well as the effects of forward scattering is introduced. Based on these two datasets, a comprehensive evaluation of aerosol products from the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on NASA's Earth Observing System satellites, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat satellite, and the Copernicus Atmosphere Monitoring Service reanalysis (CAMS RA) is presented. For this purpose, focus is given to the accuracy of the AOD at 630 nm in combination with the Ångström exponent (AE), discussed in the context of the ambient aerosol type. In general, the evaluation of MODIS AOD from the official level-2 aerosol products of C6.1 against the Microtops AOD product confirms that 76 % of data points fall into the expected error limits given by previous validation studies. The SEVIRI-based AOD product exhibits a 25 % larger scatter than the MODIS AOD products at the instrument's native spectral channels. Further, the comparison of CAMS RA and MODIS AOD versus the shipborne reference shows similar performance for both datasets, with some differences arising from the assimilation and model assumptions. When considering aerosol conditions, an overestimation of AE is found for scenes dominated by desert dust for MODIS and SEVIRI products versus the shipborne reference dataset. As the composition of the mixture of aerosol in satellite products is constrained by model assumptions, this highlights the importance of considering the aerosol type in evaluation studies for identifying problematic aspects.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 548 ◽  
Author(s):  
Xinpeng Tian ◽  
Zhiqiang Gao

The aim of this study is to evaluate the accuracy of MODerate resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) products over heavy aerosol loading areas. For this analysis, the Terra-MODIS Collection 6.1 (C6.1) Dark Target (DT), Deep Blue (DB) and the combined DT/DB AOD products for the years 2000–2016 are used. These products are validated using AErosol RObotic NETwork (AERONET) data from twenty-three ground sites situated in high aerosol loading areas and with available measurements at least 500 days. The results show that the numbers of collections (N) of DB and DT/DB retrievals were much higher than that of DT, which was mainly caused by unavailable retrieval of DT in bright reflecting surface and heavy pollution conditions. The percentage falling within the expected error (PWE) of the DT retrievals (45.6%) is lower than that for the DB (53.4%) and DT/DB (53.1%) retrievals. The DB retrievals have 5.3% less average overestimation, and 25.7% higher match ratio than DT/DB retrievals. It is found that the current merged aerosol algorithm will miss some cases if it is determined only on the basis of normalized difference vegetation index. As the AOD increases, the value of PWE of the three products decreases significantly; the undervaluation is suppressed, and the overestimation is aggravated. The retrieval accuracy shows distinct seasonality: the PWE is largest in autumn or winter, and smallest in summer. The most severe overestimation and underestimation occurred in the summer. Moreover, the DT, DB and DT/DB products over different land cover types still exhibit obvious deviations. In urban areas, the PWE of DB product (52.6%) is higher than for the DT/DB (46.3%) and DT (25.2%) products. The DT retrievals perform poorly over the barren or sparsely vegetated area (N = 52). However, the performance of three products is similar over vegetated area. On the whole, the DB product performs better than the DT product over the heavy aerosol loading area.


2010 ◽  
Vol 27 (8) ◽  
pp. 1331-1342 ◽  
Author(s):  
M. M. Schreier ◽  
B. H. Kahn ◽  
A. Eldering ◽  
D. A. Elliott ◽  
E. Fishbein ◽  
...  

Abstract The combination of multiple satellite instruments on a pixel-by-pixel basis is a difficult task, even for instruments collocated in space and time, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) on board the Earth Observing System (EOS) Aqua. Toward the goal of an improved collocation methodology, the channel- and scan angle–dependent spatial response functions of AIRS that were obtained from prelaunch measurements and calculated impacts from scan geometry are shown within the context of radiance comparisons. The AIRS spatial response functions are used to improve the averaging of MODIS radiances to the AIRS footprint, and the variability of brightness temperature differences (ΔTb) between MODIS and AIRS are quantified on a channel-by-channel basis. To test possible connections between ΔTb and the derived level 2 (L2) datasets, cloud characteristics derived from MODIS are used to highlight correlations between these quantities and ΔTb, especially for ice clouds in H2O and CO2 bands. Furthermore, correlations are quantified for temperature lapse rate (dT/dp) and the magnitude of water vapor mixing ratio (q) obtained from AIRS L2 retrievals. Larger values of dT/dp and q correlate well to larger values of ΔTb in the H2O and CO2 bands. These correlations were largely eliminated or reduced after the MODIS spectral response functions were shifted by recommended values. While this investigation shows that the AIRS spatial response functions are necessary to reduce the variability and skewness of ΔTb within heterogeneous scenes, improved knowledge about MODIS spectral response functions is necessary to reduce biases in ΔTb.


2005 ◽  
Vol 22 (10) ◽  
pp. 1480-1493 ◽  
Author(s):  
Gunnar Luderer ◽  
James A. Coakley ◽  
William R. Tahnk

Abstract Observations of sunlight reflected from regions of sun glint are used to check the relative calibration of spectral radiances obtained with imaging radiometers. Reflectances at different wavelengths for sun-glint regions are linearly related. Provided that the atmosphere is reasonably transparent at the wavelengths, the aerosol burden is reasonably light, 0.64-μm optical depth less than 0.2; the particles constituting the aerosol are reasonably large, as is the case for marine aerosols; and the solar zenith angle is less than about 35°, the linear relationships between reflectances at different wavelengths are rather insensitive to the factors that govern the reflectances themselves. The relationships are remarkably insensitive to atmospheric composition, surface wind speed and direction, illumination, and viewing geometry. The slopes and offsets of the linear relationships are used to assess the relative accuracies of the calibrations of the different channels. Such assessments would appear to be attractive for checks on the in-flight performance of aircraft-borne imaging radiometers. Here, observations of reflectances at 0.64, 0.84, 1.6, and 2.1 μm for regions of sun glint obtained with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are shown to be consistent with each other. Observations of the 0.64- and 1.6-μm reflectances for the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) instrument are shown to be inconsistent with the MODIS observations, the VIRS 1.6-μm gain appearing to be too low by 9%. The 0.64-, 0.84-, and 1.6-μm reflectances obtained with the NOAA-16 and NOAA-17 Advanced Very High Resolution Radiometers (AVHRRs) for December 2002 are shown to be inconsistent with each other and inconsistent with the MODIS observations. Based on observations of the extensive ice sheets of Antarctica, the NOAA-16 0.64-μm gain is found to be too low by 5% and that for the 0.84-μm reflectance is too low by 12%; the NOAA-17 0.64-μm gain is found to be accurate (within 2%), but the 0.84-μm gain is too low by 15%. With the gains adjusted, the 0.64- and 0.84-μm reflectances obtained for regions of sun glint with the AVHRRs are consistent with each other and consistent with the Terra and Aqua MODIS observations. These results suggest that the gain for the NOAA-16 AVHRR 1.6-μm reflectance is accurate (within 1%) and that for the NOAA-17 AVHRR is too low by 5%. All of the observations were made with the AVHRR in the low-reflectance (high gain) mode. The accuracy of these assessments is expected to be about 5%.


2011 ◽  
Vol 42 (5) ◽  
pp. 338-355 ◽  
Author(s):  
Luis Samaniego ◽  
Rohini Kumar ◽  
Conrad Jackisch

The goal of this study was to assess the feasibility of using Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS) products to drive a mesoscale hydrologic model (mHM) in a poorly gauged basin. Other remotely sensed products such as LandSat and Shuttle Radar Topography Mission (SRTM) were also used to complement the local geoinformation. For this purpose, three data blending techniques that combine satellite with in situ observations were implemented and evaluated in the Mod basin (512 km2) in India. The climate of the basin is semi-arid and monsoon-dominated. The rainfall gauging network comprised six stations with daily records spanning 9 years. Daily discharge time series was only 4 years long and incomplete. Lumped and distributed versions of mHM were evaluated. Parameters of the lumped version were obtained through calibration. A multiscale regionalization technique was used to parameterize the distributed version using global parameters from other gauged basins. Both mHM versions were evaluated during six monsoon seasons. Results of numerical experiments indicated that driving mHM with satellite-based products is possible and promising. The distributed model with regionalized parameters was at least 20% more efficient than that of its lumped version. Initialization conditions must be carefully considered when the model is only driven by remotely sensed inputs.


2019 ◽  
Author(s):  
Jonas Witthuhn ◽  
Anja Hünerbein ◽  
Hartwig Deneke

Abstract. Reliable reference measurements over ocean are essential for the evaluation and improvement of satellite- and model-based aerosol datasets. Within the framework of the Maritime Aerosol Network, shipborne reference datasets have been collected over the Atlantic ocean since 2004 with Microtops sun photometers. These were recently complemented by measurements with the multi-spectral shadowband radiometer GUVis-3511 during five cruises with the research vessel Polarstern. The AOD uncertainty estimate of both ship-borne instruments of ±0.02 can be confirmed, if the GUVis instrument is cross-calibrated to the Microtops instrument to account for differences in calibration, and an empirical correction to account for the broad shadowband and the effects of forward-scattering is introduced. Based on these two datasets, a comprehensive evaluation of aerosol products from the Moderate resolution Imaging Spectroradiometer (MODIS) flown on NASA's Earth Observing System satellites, the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the geostationary Meteosat satellite, and the Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA) is presented. For this purpose, focus is given to the accuracy of the aerosol optical depth (AOD) at 630 nm in combination with the Angström exponent (AE), discussed in the context of the ambient aerosol type. In general, the evaluation of MODIS AOD from the official Level-2 aerosol products of C6.1 against the Microtops AOD product confirms that 76 % of datapoints fall into the expected error limits given by previous validation studies. The SEVIRI-based AOD product exhibits a 25 % larger scatter than the MODIS AOD products at the instrument's native spectral channels. Further, the comparison of CAMSRA and MODIS AOD versus the shipborne reference show similar performances of both datasets, with some differences arising from the assimilation and model assumptions. When considering aerosol conditions, an overestimation of AE is found for scenes dominated by desert dust for MODIS and SEVIRI products versus the shipborne reference dataset. This highlights the importance of considering aerosol type in evaluation studies for identifying problematic aspects.


Sign in / Sign up

Export Citation Format

Share Document