Does an Increase in Air Quality Models’ Resolution Bring Surface Ozone Concentrations Closer to Reality?

2008 ◽  
Vol 25 (11) ◽  
pp. 1955-1968 ◽  
Author(s):  
Myrto Valari ◽  
Laurent Menut

Abstract A persistent challenge for small-scale air quality modeling is the assessment of health impact and population exposure studies. Despite progress in computation and in the quality of model input (i.e., high-resolution information on land use and emission patterns), the uncertainty associated with input parameters cannot be eliminated. The aim of this paper is to study different sources of uncertainty that affect model results as the resolution increases. Mesoscale chemistry transport simulations at different resolutions are used and modeled 03 concentrations are compared with surface measurements. The case study consists of CHIMERE model simulations over the city of Paris. It is shown that the principal source of noise in model results is the resolution of the input emission fluxes. The O3 concentrations modeled with simulations forced by several horizontal resolutions of input emission data (from Δx = 48 km to Δx = 6 km) indicate that model results do not improve monotonously with resolution, but that after a certain point discrepancies become larger. Based on this result and as an alternative to the deterministic downscaling that resolves explicitly the finer scale (beyond the 1-km range), the authors propose a subgrid-scale approach that uses a statistical description of spatial scales finer than model resolution. As an example, the subgrid variability of modeled O3 concentration has been quantified, when modeled dry deposition processes occur over subgrid surfaces (land use fractions). The implementation of this modified calculation gives access to subgrid fluxes and subgrid surface concentrations instead of the mean values provided by the commonly used model calculation.

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1603
Author(s):  
Ana R. Gamarra ◽  
Yolanda Lechón ◽  
Marta G. Vivanco ◽  
Mark Richard Theobald ◽  
Carmen Lago ◽  
...  

This paper assesses the health impact, in terms of the reduction of premature deaths associated with changes in air pollutant exposure, resulting from double-aim strategies for reducing emissions of greenhouse gases and air pollutants from the transport sector for the year 2030 in Spain. The impact on air quality of selected measures for reducing emissions from the transport sector (increased penetration of biofuel and electric car use) was assessed by air quality modeling. The estimation of population exposure to NO2, particulate matter (PM) and O3 allows for estimation of associated mortality and external costs in comparison with the baseline scenario with no measures. The results show that the penetration of the electric vehicle provided the largest benefits, even when the emissions due to the additional electricity demand were considered.


2019 ◽  
Author(s):  
Lang Wang ◽  
Amos P. K. Tai ◽  
Chi-Yung Tam ◽  
Mehliyar Sadiq ◽  
Peng Wang ◽  
...  

Abstract. Surface ozone (O3) is an important air pollutant and greenhouse gas. Land use and land cover (LULC) is one of the critical factors influencing ozone, in addition to anthropogenic emissions and climate. LULC change can on the one hand affect ozone biogeochemically, i.e., via dry deposition and biogenic emissions of volatile organic compounds (VOCs). LULC change can on the other hand alter regional- to large-scale climate through modifying albedo and evapotranspiration, which can lead to changes in surface temperature, hydrometeorology and atmospheric circulation that can ultimately impact ozone biogeophysically over local and remote areas. Such biogeophysical effects of LULC on ozone are largely understudied. This study investigates the individual and combined biogeophysical and biogeochemical effects of LULC on ozone, and explicitly examines the critical pathway for how LULC change impacts ozone pollution. A global coupled atmosphere–chemistry–land model is driven by projected LULC changes from the present day (2000) to future (2050) under RCP4.5 and RCP8.5 scenarios, focusing on the boreal summer. Results reveal that when considering biogeochemical effects only, surface ozone is predicted to have slight changes by up to 2 ppbv maximum in some areas due to LULC changes. It is primarily driven by changes in isoprene emission and dry deposition counteracting each other in shaping ozone. In contrast, when considering the integrated effect of LULC, ozone is more substantially altered by up to 6 ppbv over several regions, reflecting the importance of biogeophysical effects on ozone changes. Furthermore, large areas of these ozone changes are found over the regions without LULC changes where the biogeophysical effect is the only pathway for such changes. The mechanism is likely that LULC change induces a regional circulation response, in particular the formation of anomalous stationary high-pressure systems, shifting of moisture transport, and near-surface warming over the middle-to-high northern latitudes in boreal summer, owing to associated changes in albedo and surface energy budget. Such temperature changes then alter ozone substantially. We conclude that the biogeophysical effect of LULC is an important pathway for the influence of LULC change on ozone air quality over both local and remote regions, even in locations without significant LULC changes. Overlooking the impact of biogeophysical effect may cause evident underestimation of the impacts of LULC change on ozone pollution.


2011 ◽  
Vol 11 (5) ◽  
pp. 15469-15495 ◽  
Author(s):  
S. Wu ◽  
L. J. Mickley ◽  
J. O. Kaplan ◽  
D. J. Jacob

Abstract. The effects of future land use and land cover change on the chemical composition of the atmosphere and air quality are largely unknown. To investigate the potential effects associated with future changes in vegetation driven by atmospheric CO2 concentrations, climate, and anthropogenic land use over the 21st century, we performed a series of model experiments combining a general circulation model with a dynamic global vegetation model and an atmospheric chemical-transport model. Our results indicate that climate- and CO2-induced changes in vegetation composition and density could lead to decreases in summer afternoon surface ozone of up to 10 ppb over large areas of the northern mid-latitudes. This is largely driven by the substantial increases in ozone dry deposition associated with changes in the composition of temperate and boreal forests where conifer forests are replaced by those dominated by broadleaf tree types, as well as a CO2-driven increase in vegetation density. Climate-driven vegetation changes over the period 2000–2100 lead to general increases in isoprene emissions, globally by 15 % in 2050 and 36 % in 2100. These increases in isoprene emissions result in decreases in surface ozone concentrations where the NOx levels are low, such as in remote tropical rainforests. However, over polluted regions, such as the northeastern United States, ozone concentrations are calculated to increase with higher isoprene emissions in the future. Increases in biogenic emissions also lead to higher concentrations of secondary organic aerosols, which increase globally by 10 % in 2050 and 20 % in 2100. Surface concentrations of secondary organic aerosols are calculated to increase by up to 1 μg m−3 for large areas in Eurasia. When we use a scenario of future anthropogenic land use change, we find less increase in global isoprene emissions due to replacement of higher-emitting forests by lower-emitting cropland. The global atmospheric burden of secondary organic aerosols changes little by 2100 when we account for future land use change, but both secondary organic aerosols and ozone show large regional changes at the surface.


2011 ◽  
Vol 366 (1582) ◽  
pp. 3210-3224 ◽  
Author(s):  
J. A. Pyle ◽  
N. J. Warwick ◽  
N. R. P. Harris ◽  
Mohd Radzi Abas ◽  
A. T. Archibald ◽  
...  

We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO x emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.


2021 ◽  
Author(s):  
Andres Yarce Botero ◽  
Olga Lucia Quintero Montoya ◽  
Santiago Lopez-Restrepo ◽  
Nicolás Pinel ◽  
Jhon Edinson Hinestroza ◽  
...  

This chapter book presents Medellín Air qUality Initiative or MAUI Project; it tells a brief story of this teamwork, their scientific and technological directions. The modeling work focuses on the ecosystems and human health impact due to the exposition of several pollutants transported from long-range places and deposited. For this objective, the WRF and LOTOS-EUROS were configurated and implemented over the región of interest previously updating some input conditions like land use and orography. By other side, a spinoff initiative named SimpleSpace was also born during this time, developing, through this instrumentation branch a very compact and modular low-cost sensor to deploy in new air quality networks over the study domain. For testing this instrument and find an alternative way to measure pollutants in the vertical layers, the Helicopter In-Situ Pollution Assessment Experiment HIPAE misión was developed to take data through the overflight of a helicopter over Medellín. From the data obtained from the Simple units and other experiments in the payload, a citogenotoxicity analysis quantify the cellular damage caused by the exposition of the pollutants.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dylan S. Davis ◽  
Kristina Douglass

Archaeologists interested in the evolution of anthropogenic landscapes have productively adopted Niche Construction Theory (NCT), in order to assess long-term legacies of human-environment interactions. Applications of NCT have especially been used to elucidate co-evolutionary dynamics in agricultural and pastoral systems. Meanwhile, foraging and/or highly mobile small-scale communities, often thought of as less intensive in terms of land-use than agropastoral economies, have received less theoretical and analytical attention from a landscape perspective. Here we address this lacuna by contributing a novel remote sensing approach for investigating legacies of human-environment interaction on landscapes that have a long history of co-evolution with highly mobile foraging communities. Our study is centered on coastal southwest Madagascar, a region inhabited by foraging and fishing communities for close to two millennia. Despite significant environmental changes in southwest Madagascar’s environment following human settlement, including a wave of faunal extinctions, little is known about the scale, pace and nature of anthropogenic landscape modification. Archaeological deposits in this area generally bear ephemeral traces of past human activity and do not exhibit readily visible signatures of intensive land-use and landscape modification (e.g., agricultural modifications, monumental architecture, etc.). In this paper we use high-resolution satellite imagery and vegetative indices to reveal a legacy of human-landscape co-evolution by comparing the characteristics – vegetative productivity and geochemical properties – of archaeological sites to those of locations with no documented archaeological materials. Then, we use a random forest (RF) algorithm and spatial statistics to quantify the extent of archaeological activity and use this analysis to contextualize modern-day human-environment dynamics. Our results demonstrate that coastal foraging communities in southwest Madagascar over the past 1,000 years have extensively altered the landscape. Our study thus expands the temporal and spatial scales at which we can evaluate human-environment dynamics on Madagascar, providing new opportunities to study early periods of the island’s human history when mobile foraging communities were the dominant drivers of landscape change.


2021 ◽  
Author(s):  
Jacinta Edebeli ◽  
Curdin Spirig ◽  
Julien Anet

<p>The fifth version of the Emission Database for Global Atmospheric Research (EDGAR 5.0) provides an impressive inventory of various pollutants. Pollutants from different emission sectors are available with daily, monthly and yearly temporal profiles at a high global resolution of 0.1°×0.1°. Although this resolution has been sufficient for regional air quality studies, the emissions appeared to be too coarse for local air quality studies in areas with complex topography. With Switzerland as a case study, we present our approach for downscaling EDGAR emission data to a much finer resolution of 0.02°×0.02° with the aim of modelling local air quality.</p><p>We downscaled the EDGAR emissions using a combination of GIS tools including QGIS, ArcGIS, and a series of python scripts. We obtained the surface coverage of different land use features within the defined EDGAR emission sectors from Open Street Map (OSM) using the <em>QuickOSM</em> tool in QGIS. With the calculated local surface area coverage of the emissions sectors, we downscaled the EDGAR inventory data within ArcGIS using a set of developed Arcpy script tools.</p><p>The outcome was a much finer resolved emission dataset which we fed into the WRF-CHEM air quality model within a pilot project. A comparison of the modelled pollutant concentrations using the two datasets (original EDGAR data and the downscaled data) shows an improved agreement between the downscaled dataset and the measurement data.</p><p>Studies investigating the impact of urbanization, land use change or traffic pattern on air quality may benefit from our downscaling solution, which, thanks to the global coverage of OSM, can be globally applied.</p>


2017 ◽  
Vol 17 (16) ◽  
pp. 9781-9796 ◽  
Author(s):  
Yuanhong Zhao ◽  
Lin Zhang ◽  
Amos P. K. Tai ◽  
Youfan Chen ◽  
Yuepeng Pan

Abstract. Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface–atmosphere exchange. Here we combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model, CLM) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by the addition of atmospheric deposited nitrogen – namely, emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a−1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index, LAI, in the model), could increase surface ozone from increased biogenic VOC emissions (e.g., a 6.6 Tg increase in isoprene emission), but it could also decrease ozone due to higher ozone dry deposition velocities (up to 0.02–0.04 cm s−1 increases). Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations shows general increases over the globe (up to 1.5–2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5–1.0 ppbv decreases over the eastern US, western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate- and land-use-driven surface ozone changes at regional scales and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere–atmosphere interactions, which can have important implications for future air quality prediction.


2021 ◽  
Author(s):  
Arindam Roy ◽  
Satoshi Takahama ◽  
Athanasios Nenes ◽  
Sumit Sharma ◽  
Anju Goel

<div> <p>It is well established that the high level of particulate matter is a leading cause of premature mortality and disease worldwide and especially in South Asia (Global Burden of Disease Study, 2019). The ground-based air quality (AQ) monitoring stations are used to calculate economic loss, premature mortality and validate the conversed PM2.5 concentration from satellite-based Aerosol Optical Depth (AOD) data. Over India, 793 manual monitoring air quality (AQ) monitoring stations and 307 automated AQ monitoring station are presently operating under the aegis of National Air Quality Monitoring Programme and Central Pollution Control Board respectively. However, studies addressing the spatial representativeness of the data generated from the AQ monitoring stations over India are very limited and therefore, it is unclear that whether the existing stations are sufficient to reflect the average ambient AQ over different Indian cities. </p> </div><div> <p>The present study intends to classify the existing AQ monitoring stations on the basis of spatial representativeness and derive a general conceptual framework for commissioning representative AQ monitoring sites for Indian cities. The methodology involves analysis of land use, populations and air quality data for the existing air quality stations in million plus Indian cities. A case study was conducted for Pune (18.5° N, 73.8° E), a western Indian metro city with 3.15 million population (Census, 2011). Using the night-time light data and high resolution PM2.5, population exposure hotspots over Pune city were identified. It was observed that not only at the midst of the municipal area, population exposure hotspots can be identified at the peripheral region of PMC/PNMC which certainly signify the role of rapid developmental activity and urban agglomeration over Pune city. The existing air quality monitoring sites are located majorly in the pollution hotspots in the city center region and therefore installing AQ monitoring stations (co-located  with weather station) at the rapidly developing parts of the city is highly recommended. The present land use pattern and the location of existing monitoring sites suggests lack of urban background monitoring stations which indicates the gap of knowledge in monitoring the average air quality responsible of long-term health effect over Pune. The prevalence of AQ monitoring stations in the road junction points and near to metro construction works might overestimate the exposure estimate of the general population in the city.   </p> </div>


2016 ◽  
Vol 16 (23) ◽  
pp. 14997-15010 ◽  
Author(s):  
Colette L. Heald ◽  
Jeffrey A. Geddes

Abstract. Anthropogenic land use change (LUC) since preindustrial (1850) has altered the vegetation distribution and density around the world. We use a global model (GEOS-Chem) to assess the attendant changes in surface air quality and the direct radiative forcing (DRF). We focus our analysis on secondary particulate matter and tropospheric ozone formation. The general trend of expansion of managed ecosystems (croplands and pasturelands) at the expense of natural ecosystems has led to an 11 % decline in global mean biogenic volatile organic compound emissions. Concomitant growth in agricultural activity has more than doubled ammonia emissions and increased emissions of nitrogen oxides from soils by more than 50 %. Conversion to croplands has also led to a widespread increase in ozone dry deposition velocity. Together these changes in biosphere–atmosphere exchange have led to a 14 % global mean increase in biogenic secondary organic aerosol (BSOA) surface concentrations, a doubling of surface aerosol nitrate concentrations, and local changes in surface ozone of up to 8.5 ppb. We assess a global mean LUC-DRF of +0.017, −0.071, and −0.01 W m−2 for BSOA, nitrate, and tropospheric ozone, respectively. We conclude that the DRF and the perturbations in surface air quality associated with LUC (and the associated changes in agricultural emissions) are substantial and should be considered alongside changes in anthropogenic emissions and climate feedbacks in chemistry–climate studies.


Sign in / Sign up

Export Citation Format

Share Document