scholarly journals Performance Characteristics of a Pseudo-Operational Ensemble Kalman Filter

2008 ◽  
Vol 136 (10) ◽  
pp. 3947-3963 ◽  
Author(s):  
Ryan D. Torn ◽  
Gregory J. Hakim

The 2-yr performance of a pseudo-operational (real time) limited-area ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting Model is described. This system assimilates conventional observations from surface stations, rawinsondes, the Aircraft Communications Addressing and Reporting System (ACARS), and cloud motion vectors every 6 h on a domain that includes the eastern North Pacific Ocean and western North America. Ensemble forecasts from this system and deterministic output from operational numerical weather prediction models during this same period are verified against rawinsonde and surface observation data. Relative to operational forecasts, the forecast from the ensemble-mean analysis has slightly larger errors in wind and temperature but smaller errors in moisture, even though satellite radiances are not assimilated by the EnKF. Time-averaged correlations indicate that assimilating ACARS and cloud wind data with flow-dependent error statistics provides corrections to the moisture field in the absence of direct observations of that field. Comparison with a control experiment in which a deterministic forecast is cycled without observation assimilation indicates that the skill in the EnKF’s forecasts results from assimilating observations and not from lateral boundary conditions or the model formulation. Furthermore, the ensemble variance is generally in good agreement with the ensemble-mean error and the spread increases monotonically with forecast hour.

2012 ◽  
Vol 140 (2) ◽  
pp. 587-600 ◽  
Author(s):  
Meng Zhang ◽  
Fuqing Zhang

A hybrid data assimilation approach that couples the ensemble Kalman filter (EnKF) and four-dimensional variational (4DVar) methods is implemented for the first time in a limited-area weather prediction model. In this coupled system, denoted E4DVar, the EnKF and 4DVar systems run in parallel while feeding into each other. The multivariate, flow-dependent background error covariance estimated from the EnKF ensemble is used in the 4DVar minimization and the ensemble mean in the EnKF analysis is replaced by the 4DVar analysis, while updating the analysis perturbations for the next cycle of ensemble forecasts with the EnKF. Therefore, the E4DVar can obtain flow-dependent information from both the explicit covariance matrix derived from ensemble forecasts, as well as implicitly from the 4DVar trajectory. The performance of an E4DVar system is compared with the uncoupled 4DVar and EnKF for a limited-area model by assimilating various conventional observations over the contiguous United States for June 2003. After verifying the forecasts from each analysis against standard sounding observations, it is found that the E4DVar substantially outperforms both the EnKF and 4DVar during this active summer month, which featured several episodes of severe convective weather. On average, the forecasts produced from E4DVar analyses have considerably smaller errors than both of the stand-alone EnKF and 4DVar systems for forecast lead times up to 60 h.


2007 ◽  
Vol 135 (4) ◽  
pp. 1424-1438 ◽  
Author(s):  
Andrew R. Lawrence ◽  
James A. Hansen

Abstract An ensemble-based data assimilation approach is used to transform old ensemble forecast perturbations with more recent observations for the purpose of inexpensively increasing ensemble size. The impact of the transformations are propagated forward in time over the ensemble’s forecast period without rerunning any models, and these transformed ensemble forecast perturbations can be combined with the most recent ensemble forecast to sensibly increase forecast ensemble sizes. Because the transform takes place in perturbation space, the transformed perturbations must be centered on the ensemble mean from the most recent forecasts. Thus, the benefit of the approach is in terms of improved ensemble statistics rather than improvements in the mean. Larger ensemble forecasts can be used for numerous purposes, including probabilistic forecasting, targeted observations, and to provide boundary conditions to limited-area models. This transformed lagged ensemble forecasting approach is explored and is shown to give positive results in the context of a simple chaotic model. By incorporating a suitable perturbation inflation factor, the technique was found to generate forecast ensembles whose skill were statistically comparable to those produced by adding nonlinear model integrations. Implications for ensemble forecasts generated by numerical weather prediction models are briefly discussed, including multimodel ensemble forecasting.


2020 ◽  
Author(s):  
Stephan Hemri ◽  
Christoph Spirig ◽  
Jonas Bhend ◽  
Lionel Moret ◽  
Mark Liniger

<p>Over the last decades ensemble approaches have become state-of-the-art for the quantification of weather forecast uncertainty. Despite ongoing improvements, ensemble forecasts issued by numerical weather prediction models (NWPs) still tend to be biased and underdispersed. Statistical postprocessing has proven to be an appropriate tool to correct biases and underdispersion, and hence to improve forecast skill. Here we focus on multi-model postprocessing of cloud cover forecasts in Switzerland. In order to issue postprocessed forecasts at any point in space, ensemble model output statistics (EMOS) models are trained and verified against EUMETSAT CM SAF satellite data with a spatial resolution of around 2 km over Switzerland. Training with a minimal record length of the past 45 days of forecast and observation data already produced an EMOS model improving direct model output (DMO). Training on a 3 years record of the corresponding season further improved the performance. We evaluate how well postprocessing corrects the most severe forecast errors, like missing fog and low level stratus in winter. For such conditions, postprocessing of cloud cover benefits strongly from incorporating additional predictors into the postprocessing suite. A quasi-operational prototype has been set up and was used to explore meteogram-like visualizations of probabilistic cloud cover forecasts.</p>


2012 ◽  
Vol 27 (3) ◽  
pp. 541-564 ◽  
Author(s):  
Thomas A. Jones ◽  
David J. Stensrud

Abstract One satellite data product that has received great interest in the numerical weather prediction community is the temperature and mixing ratio profiles derived from the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite. This research assesses the impact of assimilating AIRS profiles on high-resolution ensemble forecasts of southern plains severe weather events occurring on 26 May 2009 and 10 May 2010 by comparing two ensemble forecasts. In one ensemble, the 1830 and 2000 UTC level 2 AIRS temperature and dewpoint profiles are assimilated with all other routine observations into a 36-member, 15-km Weather and Research Forecast Model (WRF) ensemble using a Kalman filter approach. The other ensemble is identical, except that only routine observations are assimilated. In addition, 3-km one-way nested-grid ensemble forecasts are produced during the periods of convection. Results indicate that over the contiguous United States, the AIRS profiles do not measurably improve the ensemble mean forecasts of midtropospheric temperature and dewpoint. However, the ensemble mean dewpoint profiles in the region of severe convective development are improved by the AIRS assimilation. Comparisons of the forecast ensemble radar reflectivity probabilities between the 1- and 4-h forecast times with nearby Weather Surveillance Radar-1988 Doppler (WSR-88D) observations show that AIRS-enhanced ensembles consistently generate more skillful forecasts of the convective features at these times.


2013 ◽  
Vol 141 (3) ◽  
pp. 900-917 ◽  
Author(s):  
Fuqing Zhang ◽  
Meng Zhang ◽  
Jonathan Poterjoy

Abstract This study examines the performance of a hybrid ensemble-variational data assimilation system (E3DVar) that couples an ensemble Kalman filter (EnKF) with the three-dimensional variational data assimilation (3DVar) system for the Weather Research and Forecasting (WRF) Model. The performance of E3DVar and the component EnKF and 3DVar systems are compared over the eastern United States for June 2003. Conventional sounding and surface observations as well as data from wind profilers, aircraft and ships, and cloud-tracked winds from satellites, are assimilated every 6 h during the experiments, and forecasts are verified using standard sounding observations. Forecasts with 12- to 72-h lead times are found to have noticeably smaller root-mean-square errors when initialized with the E3DVar system, as opposed to the EnKF, especially for the 12-h wind and moisture fields. The E3DVar system demonstrates similar performance as an EnKF, while using less than half the number of ensemble members, and is less sensitive to the use of a multiphysics ensemble to account for model errors. The E3DVar system is also compared with a similar hybrid method that replaces the 3DVar component with the WRF four-dimensional variational data assimilation (4DVar) method (denoted E4DVar). The E4DVar method demonstrated considerable improvements over E3DVar for nearly all model levels and variables at the shorter forecast lead times (12–48 h), but the forecast accuracies of all three ensemble-based methods (EnKF, E3DVar, and E4DVar) converge to similar results at longer lead times (60–72 h). Nevertheless, all methods that used ensemble information produced considerably better forecasts than the two methods that relied solely on static background error covariance (i.e., 3DVar and 4DVar).


2015 ◽  
Vol 30 (5) ◽  
pp. 1158-1181 ◽  
Author(s):  
Craig S. Schwartz ◽  
Glen S. Romine ◽  
Morris L. Weisman ◽  
Ryan A. Sobash ◽  
Kathryn R. Fossell ◽  
...  

Abstract In May and June 2013, the National Center for Atmospheric Research produced real-time 48-h convection-allowing ensemble forecasts at 3-km horizontal grid spacing using the Weather Research and Forecasting (WRF) Model in support of the Mesoscale Predictability Experiment field program. The ensemble forecasts were initialized twice daily at 0000 and 1200 UTC from analysis members of a continuously cycling, limited-area, mesoscale (15 km) ensemble Kalman filter (EnKF) data assimilation system and evaluated with a focus on precipitation and severe weather guidance. Deterministic WRF Model forecasts initialized from GFS analyses were also examined. Subjectively, the ensemble forecasts often produced areas of intense convection over regions where severe weather was observed. Objective statistics confirmed these subjective impressions and indicated that the ensemble was skillful at predicting precipitation and severe weather events. Forecasts initialized at 1200 UTC were more skillful regarding precipitation and severe weather placement than forecasts initialized 12 h earlier at 0000 UTC, and the ensemble forecasts were typically more skillful than GFS-initialized forecasts. At times, 0000 UTC GFS-initialized forecasts had temporal distributions of domain-average rainfall closer to observations than EnKF-initialized forecasts. However, particularly when GFS analyses initialized WRF Model forecasts, 1200 UTC forecasts produced more rainfall during the first diurnal maximum than 0000 UTC forecasts. This behavior was mostly attributed to WRF Model initialization of clouds and moist physical processes. The success of these real-time ensemble forecasts demonstrates the feasibility of using limited-area continuously cycling EnKFs as a method to initialize convection-allowing ensemble forecasts, and future real-time high-resolution ensemble development leveraging EnKFs seems justified.


2014 ◽  
Vol 7 (4) ◽  
pp. 1451-1465 ◽  
Author(s):  
S. Skachko ◽  
Q. Errera ◽  
R. Ménard ◽  
Y. Christophe ◽  
S. Chabrillat

Abstract. An ensemble Kalman filter (EnKF) assimilation method is applied to the tracer transport using the same stratospheric transport model as in the four-dimensional variational (4D-Var) assimilation system BASCOE (Belgian Assimilation System for Chemical ObsErvations). This EnKF version of BASCOE was built primarily to avoid the large costs associated with the maintenance of an adjoint model. The EnKF developed in BASCOE accounts for two adjustable parameters: a parameter α controlling the model error term and a parameter r controlling the observational error. The EnKF system is shown to be markedly sensitive to these two parameters, which are adjusted based on the monitoring of a χ2 test measuring the misfit between the control variable and the observations. The performance of the EnKF and 4D-Var versions was estimated through the assimilation of Aura-MLS (microwave limb sounder) ozone observations during an 8-month period which includes the formation of the 2008 Antarctic ozone hole. To ensure a proper comparison, despite the fundamental differences between the two assimilation methods, both systems use identical and carefully calibrated input error statistics. We provide the detailed procedure for these calibrations, and compare the two sets of analyses with a focus on the lower and middle stratosphere where the ozone lifetime is much larger than the observational update frequency. Based on the observation-minus-forecast statistics, we show that the analyses provided by the two systems are markedly similar, with biases less than 5% and standard deviation errors less than 10% in most of the stratosphere. Since the biases are markedly similar, they most probably have the same causes: these can be deficiencies in the model and in the observation data set, but not in the assimilation algorithm nor in the error calibration. The remarkably similar performance also shows that in the context of stratospheric transport, the choice of the assimilation method can be based on application-dependent factors, such as CPU cost or the ability to generate an ensemble of forecasts.


2017 ◽  
Vol 145 (2) ◽  
pp. 617-635 ◽  
Author(s):  
Mark Buehner ◽  
Ron McTaggart-Cowan ◽  
Sylvain Heilliette

Several NWP centers currently employ a variational data assimilation approach for initializing deterministic forecasts and a separate ensemble Kalman filter (EnKF) system both for initializing ensemble forecasts and for providing ensemble background error covariances for the deterministic system. This study describes a new approach for performing the data assimilation step within a perturbed-observation EnKF. In this approach, called VarEnKF, the analysis increment is computed with a variational data assimilation approach both for the ensemble mean and for all of the ensemble perturbations. To obtain a computationally efficient algorithm, a much simpler configuration is used for the ensemble perturbations, whereas the configuration used for the ensemble mean is similar to that used for the deterministic system. Numerous practical benefits may be realized by using a variational approach for both deterministic and ensemble prediction, including improved efficiency for the development and maintenance of the computer code. Also, the use of essentially the same data assimilation algorithm would likely reduce the amount of numerical experimentation required when making system changes, since their impacts in the two systems would be very similar. The variational approach enables the use of hybrid background error covariances and may also allow the assimilation of a larger volume of observations. Preliminary tests with the Canadian global 256-member system produced significantly improved ensemble forecasts with VarEnKF as compared with the current EnKF and at a comparable computational cost. These improvements resulted entirely from changes to the ensemble mean analysis increment calculation. Moreover, because each ensemble perturbation is updated independently, VarEnKF scales perfectly up to a very large number of processors.


2011 ◽  
Vol 139 (2) ◽  
pp. 668-688 ◽  
Author(s):  
Thomas M. Hamill ◽  
Jeffrey S. Whitaker ◽  
Michael Fiorino ◽  
Stanley G. Benjamin

Abstract Verification was performed on ensemble forecasts of 2009 Northern Hemisphere summer tropical cyclones (TCs) from two experimental global numerical weather prediction ensemble prediction systems (EPSs). The first model was a high-resolution version (T382L64) of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS). The second model was a 30-km version of the experimental NOAA/Earth System Research Laboratory’s Flow-following finite-volume Icosahedral Model (FIM). Both models were initialized with the first 20 members of a 60-member ensemble Kalman filter (EnKF) using the T382L64 GFS. The GFS–EnKF assimilated the full observational data stream that was normally assimilated into the NCEP operational Global Statistical Interpolation (GSI) data assimilation, plus human-synthesized “observations” of tropical cyclone central pressure and position produced at the National Hurricane Center and the Joint Typhoon Warning Center. The forecasts from the two experimental ensembles were compared against four operational EPSs from the European Centre for Medium-Range Weather Forecasts (ECMWF), NCEP, the Canadian Meteorological Centre (CMC), and the Met Office (UKMO). The errors of GFS–EnKF ensemble track forecasts were competitive with those from the ECMWF ensemble system, and the overall spread of the ensemble tracks was consistent in magnitude with the track error. Both experimental EPSs had much lower errors than the operational NCEP, UKMO, and CMC EPSs, but the FIM–EnKF tracks were somewhat less accurate than the GFS–EnKF. The ensemble forecasts were often stretched in particular directions, and not necessarily along or across track. The better-performing EPSs provided useful information on potential track error anisotropy. While the GFS–EnKF initialized relatively deep vortices by assimilating the TC central pressure estimate, the model storms filled during the subsequent 24 h. Other forecast models also systematically underestimated TC intensity (e.g., maximum forecast surface wind speed). The higher-resolution models generally had less bias. Analyses were conducted to try to understand whether the additional central pressure observation, the EnKF, or the extra resolution was most responsible for the decrease in track error of the experimental Global Ensemble Forecast System (GEFS)–EnKF over the operational NCEP. The assimilation of the additional TC observations produced only a small change in deterministic track forecasts initialized with the GSI. The T382L64 GFS–EnKF ensemble was used to initialize a T126L28 ensemble forecast to facilitate a comparison with the operational NCEP system. The T126L28 GFS–EnKF EPS track forecasts were dramatically better than the NCEP operational, suggesting the positive impact of the EnKF, perhaps through improved steering flow.


2011 ◽  
Vol 139 (7) ◽  
pp. 2025-2045 ◽  
Author(s):  
Zhiyong Meng ◽  
Fuqing Zhang

Abstract Ensemble-based data assimilation is a state estimation technique that uses short-term ensemble forecasts to estimate flow-dependent background error covariance and is best known by varying forms of ensemble Kalman filters (EnKFs). The EnKF has recently emerged as one of the primary alternatives to the variational data assimilation methods widely used in both global and limited-area numerical weather prediction models. In addition to comparing the EnKF with variational methods, this article reviews recent advances and challenges in the development and applications of the EnKF, including its hybrid with variational methods, in limited-area models that resolve weather systems from convective to meso- and regional scales.


Sign in / Sign up

Export Citation Format

Share Document