A Comparison of Roll and Nonroll Convection and the Subsequent Deepening Moist Convection: An LEM Case Study Based on SCMS Data

2009 ◽  
Vol 137 (1) ◽  
pp. 350-365 ◽  
Author(s):  
Qian Huang ◽  
John H. Marsham ◽  
Douglas J. Parker ◽  
Wenshou Tian ◽  
Tammy Weckwerth

Abstract Rolls observed during the Small Cumulus Microphysical Study (SCMS) field campaign are simulated using a large eddy model (LEM). The simulated boundary layer properties were in a good agreement with sounding profiles and aircraft observations, and the observed boundary layer rolls were reproduced by the model. Rolls started to decay when −Zi/L exceeded a threshold, with a value between 5 and 45. Here Zi and L refer to the height of the top of convective boundary layer and the Monin–Obukhov length, respectively. This value was found to depend on a nondimensional combination of the low-level wind shear, the height of the CBL, and the eddy velocity scale. Larger surface buoyancy fluxes and smaller shears gave higher thresholds. For the case modeled, rolls persisted for surface buoyancy fluxes less than 110 W m−2, and formed for boundary layer wind shears greater than 5 × 10−3 s−1, which is consistent with previous studies. The simulated roll convection was compared with a nonroll simulation, which was identical except for the wind and the wind shear used. In both the roll and nonroll cases the variability in convective inhibition (CIN) was dominated by the variability in the source air, rather than the lifting of the top of the boundary layer by the convection. Stronger moist updrafts existed in the nonroll convection, whereas roll convection gave a more symmetrical distribution of up and downdrafts, with stronger downdrafts than the nonroll case. The nonroll convection simulations have lower minimum values of CIN and clouds develop 15 min earlier in this case.

2008 ◽  
Vol 136 (7) ◽  
pp. 2305-2320 ◽  
Author(s):  
Robert J. Conzemius ◽  
Evgeni Fedorovich

Abstract Results are presented from a combined numerical and observational study of the convective boundary layer (CBL) diurnal evolution on a day of the International H2O Project (IHOP_2002) experiment that was marked by the passage of a dryline across part of the Oklahoma and Texas Panhandles. The initial numerical setup was based on observational data obtained from IHOP_2002 measurement platforms and supplementary datasets from surrounding locations. The initial goals of the study were as follows: (i) numerical investigation of the structure and evolution of the relatively shallow and homogeneous CBL east of the dryline by means of large-eddy simulation (LES), (ii) evaluation of LES predictions of the sheared CBL growth against lidar observations of the CBL depth evolution, and (iii) comparison of the simulated turbulence structures with those observed by lidar and vertically pointing radar during the CBL evolution. In the process of meeting these goals, complications associated with comparisons between LES predictions and atmospheric observations of sheared CBLs were encountered, adding an additional purpose to this study, namely, to convey and analyze these issues. For a period during mid- to late morning, the simulated CBL evolution was found to be in fair agreement with atmospheric lidar and radar observations, and the simulated entrainment dynamics were consistent with those from previous studies. However, CBL depths, determined from lidar data, increased at a faster rate than in the simulations during the afternoon, and the wind direction veered in the simulations more than in the observations. The CBL depth discrepancy can be explained by a dryline solenoidal circulation reported in other studies of the 22 May 2002 case. The discrepancy in winds can be explained by time variation of the large-scale pressure gradient, which was not included in LES.


2014 ◽  
Vol 14 (23) ◽  
pp. 32491-32533 ◽  
Author(s):  
C. Darbieu ◽  
F. Lohou ◽  
M. Lothon ◽  
J. Vilà-Guerau de Arellano ◽  
F. Couvreux ◽  
...  

Abstract. We investigate the decay of planetary boundary layer (PBL) turbulence in the afternoon, from the time the surface buoyancy flux starts to decrease until sunset. Dense observations of mean and turbulent parameters were acquired during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field experiment by several meteorological surface stations, sounding balloons, radars, lidars, and two aircraft flying extensively during the afternoon transition. We analyzed a case study based on some of those observations and Large-Eddy Simulation (LES) data focusing on the turbulent vertical structure throughout the afternoon transition. The decay of turbulence is quantified through the temporal and vertical evolution of (1) the turbulence kinetic energy (TKE), (2) the characteristic length scales of turbulence, (3) the shape of the turbulence spectra. A spectral analysis of LES data, airborne and surface measurements is performed in order to (1) characterize the variation of the turbulent decay with height and (2) study the distribution of turbulence over eddy size. This study points out the LES ability to reproduce the turbulence evolution throughout the afternoon. LES and observations agree that the afternoon transition can be divided in two phases: (1) a first phase during which the TKE decays with a low rate, with no significant change in turbulence characteristics, (2) a second phase characterized by a larger TKE decay rate and a change spectral shape, implying an evolution of eddy size distribution and energy cascade from low to high wavenumber. The changes observed either on TKE decay (during the first phase) or on the vertical wind spectra shape (during the second phase of the afternoon transition) occur first in the upper region of the PBL. The higher within the PBL, the stronger the spectra shape changes.


2006 ◽  
Vol 63 (4) ◽  
pp. 1151-1178 ◽  
Author(s):  
Robert J. Conzemius ◽  
Evgeni Fedorovich

Abstract The reported study examines the dynamics of entrainment and its effects on the evolution of the dry atmospheric convective boundary layer (CBL) when wind shear is present. The sheared CBL can be studied by means of direct measurements in the atmosphere, laboratory studies, and numerical techniques. The advantages and disadvantages of each technique are discussed in the present paper, which also describes the methodological background for studying the dynamics of entrainment in sheared CBLs. For the reported study, large-eddy simulation (LES) was chosen as the primary method of convective entrainment investigation. Twenty-four LES runs were conducted for CBLs growing under varying conditions of surface buoyancy flux, free-atmospheric stratification, and wind shear. The simulations were divided into three categories: CBL with no mean wind (NS), CBL with a height-constant geostrophic wind of 20 m s−1 (GC), and CBL with geostrophic wind shear (GS). In the simulated cases, the sheared CBLs grew fastest, relative to the NS CBLs, when the surface buoyancy flux was weak and the atmospheric stratification was moderate or weak. Three fundamental findings resulted from the investigated CBL cases: (i) the entrainment zone shear is much more important than the surface shear in enhancing CBL entrainment, although entrainment zone shear is indirectly affected by surface shear; (ii) the sheared entrainment zone features a sublayer of nearly constant flux Richardson number, which points to a balance between shear production and buoyancy consumption of turbulence kinetic energy (TKE) that regulates entrainment; and (iii) the fraction of entrainment zone shear-generated TKE spent on the entrainment is lower than suggested by earlier studies.


2012 ◽  
Vol 8 (1) ◽  
pp. 83-86 ◽  
Author(s):  
J. G. Pedersen ◽  
M. Kelly ◽  
S.-E. Gryning ◽  
R. Floors ◽  
E. Batchvarova ◽  
...  

Abstract. Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when the simulated flow is driven by a both time- and height-dependent geostrophic wind and a time-dependent surface heat flux. This underlines the importance of mesoscale effects when the flow above the atmospheric surface layer is simulated with a computational fluid dynamics model.


Sign in / Sign up

Export Citation Format

Share Document