Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific Region

2010 ◽  
Vol 67 (1) ◽  
pp. 248-261 ◽  
Author(s):  
Jung Hyo Chae ◽  
Steven C. Sherwood

Abstract The connection between environmental stability and the height of tropical deep convective clouds is analyzed using stereo cloud height data from the Multiangle Imaging Spectroradiometer (MISR), focusing on the seasonal cycle of clouds over the western Pacific Ocean. Three peaks in cloud-top height representing low, mid-topped, and deep convective clouds are found as in previous studies. The optically thickest cloud heights are roughly 2 km higher on the summer side of the equator, where CAPE is higher, than on the winter side. Overall cloud height, however, is about the same on both sides of the equator, but ∼600 m higher in December–February (DJF) than in June–August (JJA). Because of variations in stratospheric upwelling, temperatures near the tropopause exhibit a significant seasonal cycle, mainly above 13 km. Using an ensemble of simulations by the Weather Research and Forecasting (WRF) cloud-resolving model and a simple overshooting parcel calculation, the authors show that the cloud height variation can be explained by that of near-tropopause stability changes, including influence from heights above 14 km, even though the cloud height peaks only near 12 km. This suggests that mixing above cloud top—not typically accounted for in simple models of convection—is important in setting the height of the laminar (anvil) high clouds that result. The MISR data indicate a seasonal variation in peak cloud-top temperature of ∼5 K, despite the recent proposal that cloud-top heights should track a fixed isotherm. That proposal must therefore be applied with caution to any climate-change scenario that may involve significant changes in stratospheric upwelling.

2007 ◽  
Vol 46 (11) ◽  
pp. 1840-1856 ◽  
Author(s):  
Gang Hong ◽  
Ping Yang ◽  
Bo-Cai Gao ◽  
Bryan A. Baum ◽  
Yong X. Hu ◽  
...  

Abstract This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics (30°S–30°N) over a 3-yr period from September 2002 through August 2005. The analyses are based on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard both the NASA Earth Observing System Terra and Aqua platforms. The present analysis is based on the MODIS collection-4 data products. The cloud products provide daily, weekly, and monthly mean cloud fraction, cloud optical thickness, cloud effective radius, cloud-top temperature, cloud-top pressure, and cloud effective emissivity, which is defined as the product of cloud emittance and cloud fraction. This study is focused on high-level ice clouds. The MODIS-derived high clouds are classified as cirriform and deep convective clouds using the International Satellite Cloud Climatology Project (ISCCP) classification scheme. Cirriform clouds make up more than 80% of the total high clouds, whereas deep convective clouds account for less than 20% of the total high clouds. High clouds are prevalent over the intertropical convergence zone (ITCZ), the South Pacific convergence zone (SPCZ), tropical Africa, the Indian Ocean, tropical America, and South America. Moreover, land–ocean, morning–afternoon, and summer–winter variations of high cloud properties are also observed.


2012 ◽  
Vol 8 (2) ◽  
pp. 701-703 ◽  
Author(s):  
R. Rondanelli ◽  
R. S. Lindzen

Abstract. Goldblatt and Zahnle (2011) raise a number of issues related to the possibility that cirrus clouds can provide a solution to the faint young sun paradox. Here, we argue that: (1) climates having a lower than present mean surface temperature cannot be discarded as solutions to the faint young sun paradox, (2) the detrainment from deep convective clouds in the tropics is a well-established physical mechanism for the formation of high clouds that have a positive radiative forcing (even if the possible role of these clouds as a negative climate feedback remains controversial) and (3) even if some cloud properties are not mutually consistent with observations in radiative transfer parameterizations, the most relevant consistency (for the purpose of hypothesis testing) is with observations of the cloud radiative forcing. Therefore, we maintain that cirrus clouds, as observed in the current climate and covering a large region of the tropics, can provide a solution to the faint young sun paradox, or at least ease the amount of CO2 or other greenhouse substances needed to provide temperatures above freezing during the Archean.


2015 ◽  
Vol 8 (11) ◽  
pp. 4573-4585 ◽  
Author(s):  
B.-J. Sohn ◽  
M.-J. Choi ◽  
J. Ryu

Abstract. This study attempted to explain why deep convective clouds (DCCs) over the western Pacific are generally darker than those found over tropical African and South American land regions. The western Pacific domain was further divided into its land and ocean regions to deduce the general differences in DCC characteristics between convectively active tropical land and ocean regions. DCC in this study is defined as a single-layer cloud whose thickness is greater than 15 km, and it is determined from CloudSat-measured reflectivity profiles. Corresponding MODIS-measured reflectivities at 0.645 μm were examined, along with the analysis of cloud products from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO) measurements. From an analysis of the four January months of 2007–2010, a distinct difference in ice water path (IWP) between the ocean region of the western Pacific and the three tropical land regions was revealed. Distinct differences in the effective radius between land and ocean were also found. The findings lead to a conclusion that smaller IWP over the western Pacific ocean region than over the tropical land regions, which should be caused by different cloud microphysics between land and ocean, is the main cause of smaller reflectivity there.


2015 ◽  
Vol 8 (3) ◽  
pp. 2409-2436
Author(s):  
M.-J. Choi ◽  
B. J. Sohn

Abstract. This study attempted to explain why deep convective clouds (DCCs) over the western Pacific are generally darker than those found over tropical African and South American land regions. For defining 1 km pixel DCCs in this study, 205 K of Aqua-MODIS brightness temperature at 11 μm (TB11) was used as a criterion. Corresponding MODIS-measured reflectivities at 0.645 μm were examined, and an analysis of collocated Cloud Profile Radar (CPR) onboard CloudSat and Cloud Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO) measurements and derived cloud products was conducted. From an analysis of the four January months of 2007–2010, a distinct difference in ice water path (IWP) between the western Pacific and the two tropical land regions was demonstrated. Small but meaningful differences in the effective radius were also found. The results led to a conjecture that smaller IWP over the western Pacific than over the tropical land regions is the main cause of smaller reflectivity there. This finding suggests that regionally different reflectivity of DCCs over the tropics up to 5% on average are to be counted when those DCCs are used for the solar channel calibration.


2013 ◽  
Vol 13 (21) ◽  
pp. 10795-10806 ◽  
Author(s):  
H. H. Aumann ◽  
A. Ruzmaikin

Abstract. Deep convective clouds (DCCs) have been widely studied because of their association with heavy precipitation and severe weather events. Changes in the properties of DCCs are likely in a changing climate. Ten years of data collected by Atmospheric Infrared Sounder (AIRS) allow us to identify decadal trends in frequency of occurrence of DCCs over land and ocean. In the past, DCCs have been identified in the thermal infrared by three methods: (1) thresholds based on the absolute value of an atmospheric window channel brightness temperature; (2) thresholds based on the difference between the brightness temperature in an atmospheric window channel and the brightness temperature centered on a strong water vapor absorption line; and (3) a threshold using the difference between the window channel brightness temperature and the tropopause temperature based on climatology. Simultaneous observations of these infrared identified DCCs with the Advanced Microwave Sounding Unit–Humidity Sounder for Brazil (AMSU-HSB) using 183 GHz water channels provide a statistical correlation with microwave deep convection and overshooting convection. In the past 10 years, the frequency of occurrence of DCCs has decreased for the tropical ocean, while it has increased for tropical land. The area of the tropical zone associated with DCCs is typically much less than 1%. We find that the least frequent, more extreme DCCs show the largest trend in frequency of occurrence, increasing over land and decreasing over ocean. The trends for land and ocean closely balance, such that the DCC frequency changed at an insignificant rate for the entire tropical zone. This pattern of essentially zero trend for the tropical zone, but opposite land/ocean trends, is consistent with measurements of global precipitation. The changes in frequency of occurrence of the DCCs are correlated with the Niño34 index, which defines the sea surface temperature (SST) anomaly in the east-central Pacific. This is also consistent with patterns seen in global precipitation. This suggests that the observed changes in the frequency are part of a decadal variability characterized by shifts in the main tropical circulation patterns, which does not fully balance in the 10-year AIRS data record. The regional correlations and anti-correlations of the DCC frequency anomaly with the Multivariate ENSO Index (MEI) provide a new perspective for the regional analysis of past events, since the SST anomaly in the Nino34 region is available in the form of the extended MEI from 1871.


2016 ◽  
Vol 20 (10) ◽  
pp. 4129-4142 ◽  
Author(s):  
Emma Daniels ◽  
Geert Lenderink ◽  
Ronald Hutjes ◽  
Albert Holtslag

Abstract. The effects of historic and future land use on precipitation in the Netherlands are investigated on 18 summer days with similar meteorological conditions. The days are selected with a circulation type classification and a clustering procedure to obtain a homogenous set of days that is expected to favor land impacts. Changes in precipitation are investigated in relation to the present-day climate and land use, and from the perspective of future climate and land use. To that end, the weather research and forecasting (WRF) model is used with land use maps for 1900, 2000, and 2040. In addition, a temperature perturbation of +1 °C assuming constant relative humidity is imposed as a surrogate climate change scenario. Decreases in precipitation of, respectively, 3–5 and 2–5 % are simulated following conversion of historic to present, and present to future, land use. The temperature perturbation under present land use conditions increases precipitation amounts by on average 7–8 % and amplifies precipitation intensity. However, when also considering future land use, the increase is reduced to 2–6 % on average, and no intensification of extreme precipitation is simulated. In all, the simulated effects of land use changes on precipitation in summer are smaller than the effects of climate change, but are not negligible.


Sign in / Sign up

Export Citation Format

Share Document