scholarly journals Intraseasonal Variability of the Saharan Heat Low and Its Link with Midlatitudes

2010 ◽  
Vol 23 (10) ◽  
pp. 2544-2561 ◽  
Author(s):  
Fabrice Chauvin ◽  
Romain Roehrig ◽  
Jean-Philippe Lafore

Abstract The Saharan heat low (SHL) is thought to be a key feature of the West African monsoon, and its variations during the summer season have not yet been systematically assessed. To characterize the intraseasonal variations of the SHL, real and complex empirical orthogonal function analyses were applied to the 850-hPa potential temperature field over northern Africa and the Mediterranean, using NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) reanalysis results. A robust quasi-propagative mode was highlighted over North Africa and the Mediterranean. This mode consists of two phases. The west phase corresponds to a maximum temperature over the coast of Morocco–Mauritania, propagating southwestward, and a minimum between Libya and Sicily, propagating southeastward. The east phase corresponds to the opposite temperature structure, which propagates as in the west phase. A lag-composite analysis revealed that this SHL mode was preceded by large-scale, midlatitude, intraseasonal fluctuations of the atmosphere. The southward penetration of a Rossby wave disturbance over Europe and North Africa generates modulations of the three-dimensional atmospheric structure. The low-level ventilations and harmattan-like circulation are particularly impacted, as are the subtropical westerlies and the polar jets in the upper troposphere. The west phase is concomitant with an enhanced convective signal over the Darfur region, which propagates westward, as far as the middle of the Atlantic, at a speed similar to that of the well-known African easterly waves. The SHL appears to be a bridge between the midlatitudes and the West African monsoon, which may offer promising sources of predictability over the Sahel on an intraseasonal time scale.

2007 ◽  
Vol 20 (15) ◽  
pp. 4014-4032 ◽  
Author(s):  
Benjamin Sultan ◽  
Serge Janicot ◽  
Philippe Drobinski

Abstract This study investigates the diurnal cycle of the West African monsoon and its seasonal modulation with particular focus on the monsoon onset period. A composite analysis around the monsoon onset date is applied to the 1979–2000 NCEP–DOE reanalysis and 40-yr ECMWF Re-Analysis (ERA-40) at 0000, 0600, 1200, and 1800 UTC. This study points out two independent modes describing the space–time variability of the diurnal cycle of low-level wind and temperature. While the first mode appears to belong to a gradual and seasonal pattern linked with the northward migration of the whole monsoon system, the second mode is characterized by more rapid time variations with a peak of both temperature and wind anomalies around the monsoon onset date. This latter mode is connected with the time pattern of a nocturnal jet reaching its highest values around the onset date. The diurnal cycle of dry and deep convection is also investigated through the same method. A distinct diurnal cycle of deep convection in the ITCZ is evidenced with a peak at 1200 UTC before the monsoon onset, and at 1800 UTC after the monsoon onset. Strong ascending motions associated with deep convection may generate a gravity wave that propagates northward and reaches the Saharan heat low region 12 h later. The diurnal cycle of the dry convection in the Saharan heat low is similar during the preonset and the postonset periods with a peak at night (0000 UTC) consistent with the nocturnal jet intensification. This convection is localized at 15° and 20°N before and after the monsoon onset, respectively. Both during the first rainy season in spring and the monsoon season in summer, the nocturnal jet brings moisture in the boundary layer north of the ITCZ favoring humidification and initiation of new convective cells, helping the northward progression of the ITCZ. At the end of the summer the southward return of the ITCZ is associated with the disappearance of the core of the monsoon jet. Despite a lot of similarities between the results obtained using NCEP–DOE and ERA-40 reanalyses, giving confidence in the significance of these results, some differences are identified, especially in the diurnal cycle of deep convection, which limit the interpretation of some of these results and highlight discrepancies in the reanalyses.


2009 ◽  
Vol 35 (1) ◽  
pp. 95-114 ◽  
Author(s):  
Bernard Fontaine ◽  
Javier Garcia-Serrano ◽  
Pascal Roucou ◽  
Belen Rodriguez-Fonseca ◽  
Teresa Losada ◽  
...  

2007 ◽  
Vol 64 (8) ◽  
pp. 2783-2803 ◽  
Author(s):  
Philippe Peyrillé ◽  
Jean-Philippe Lafore

The idealized 2D model developed in Part I of this study is used to study the West African monsoon sensitivity to large-scale forcing. Using ECWMF reanalyses, a large-scale forcing is introduced in the 2D model in terms of temperature and humidity advection. A coherent structure of cooling–moistening near the surface and drying–warming in the 2–4-km layer is found in the Saharan heat low region. The effect of the advective forcing is to block the monsoon propagation by strengthening the northerly flux and by an increase of convective inhibition. The heat low thus appears to play a key role in the monsoon northward penetration through its temperature and humidity budget. Ultimately, warmer low levels and/or more moist midlevels in the heat low favor a more northerly position of the ITCZ. A detailed view of the continental diurnal cycle is also presented. Potential temperature and humidity budgets are performed in the deep convective and heat low area. The moistening process to sustain deep convection is made through nocturnal advection at low levels and daytime turbulence that redistributes humidity vertically. The same mechanism occurs in the heat low except that the vertical transfers by turbulence help maintain the dryness of the low levels. A possible mechanism of interaction between the deep convective zone and the Saharan heat low is also proposed that involves gravity waves in the upper troposphere.


2007 ◽  
Vol 64 (8) ◽  
pp. 2765-2782 ◽  
Author(s):  
Philippe Peyrillé ◽  
Jean-Philippe Lafore ◽  
Jean-Luc Redelsperger

An idealized vertical–meridional zonally symmetric model is developed in order to recover a July typical monsoon regime over West Africa in response to surface conditions. The model includes a parameterization to account for heat and momentum fluxes associated with eddies. The sensitivity of the simulated West African monsoon equilibrium regime to some major processes is explored. It allows confirmation of the important role played by the sun’s latitudinal position, the aerosols, the albedo, and the SST’s magnitude in the Gulf of Guinea and in the Mediterranean Sea. The important role of aerosols in warming the Saharan lower layers and their effect on the whole monsoon is underlined. Model results also stress the importance of the Mediterranean Sea, which is needed to obtain the extreme dryness of the Sahara. The use of this idealized model is finally discussed for studying the scale interactions and coupling involved in the West African monsoon as explored in a companion paper.


2016 ◽  
Vol 144 (4) ◽  
pp. 1571-1589 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Caroline L. Bain ◽  
Peter Knippertz ◽  
John H. Marsham ◽  
Douglas J. Parker

Abstract Accurate prediction of the commencement of local rainfall over West Africa can provide vital information for local stakeholders and regional planners. However, in comparison with analysis of the regional onset of the West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored. One of the main reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall. A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is presented. This new method can be thought of as analogous to a regional signal against local noise analysis of onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency (denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found results. Identifying local onset regions and understanding their variability can provide important insight into the spatial limit of monsoon predictability. While local onset regions can be found over West Africa, their size is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions is presented that shows the link between the annual intertropical front progression and local agronomic onset.


2021 ◽  
Author(s):  
Christopher Johannes Diekmann ◽  
Matthias Schneider ◽  
Peter Knippertz ◽  
Andries Jan de Vries ◽  
Stephan Pfahl ◽  
...  

2008 ◽  
Vol 96 (1-2) ◽  
pp. 179-189 ◽  
Author(s):  
G. A. Dalu ◽  
M. Gaetani ◽  
M. Baldi

Sign in / Sign up

Export Citation Format

Share Document