nocturnal jet
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 1)

2019 ◽  
Vol 147 (9) ◽  
pp. 3481-3493 ◽  
Author(s):  
Joshua G. Gebauer ◽  
Alan Shapiro

Abstract The frequency and intensity of the Great Plains nocturnal low-level jet (LLJ) are enhanced by baroclinicity over the sloped terrain of the region. A classical description of baroclinic-induced diurnal wind oscillations over the Great Plains considers differential heating of the slope with respect to air at the same elevation far removed from the slope, but with buoyancy constant along the slope (Holton mechanism). Baroclinicity can also occur due to differential heating of the slope itself, which creates a gradient in buoyancy along the slope. The relative prevalence of the two types of baroclinicity in this region has received scant attention in the literature. The present study uses 19 years of data from the Oklahoma Mesonet to evaluate the characteristics of along-slope buoyancy gradients over the region. A mean negative afternoon along-slope buoyancy gradient (east–west gradient) is found over Oklahoma. The sign of this afternoon buoyancy gradient is favorable for LLJ formation, as it results in the strongest southerly geostrophic wind near the ground around sunset, which is conducive to nocturnal jet formation via the inertial oscillation mechanism. The negative afternoon buoyancy gradient is at least partially created by an east–west gradient in diurnal heating and is stronger and more consistent in the summer months, which is when LLJs are most frequent. The contribution of the along-slope buoyancy gradient to the low-level geostrophic wind was found to be as important as the contribution of the Holton mechanism. Overall, these results indicate that along-slope buoyancy gradients should be accounted for in studies of LLJ dynamics over the Great Plains.


2010 ◽  
Vol 138 (4) ◽  
pp. 1017-1025 ◽  
Author(s):  
Huizhong He ◽  
Fuqing Zhang

Abstract This study examines the diurnal variations of the warm-season precipitation over northern China using the high-resolution precipitation products obtained from the Climate Prediction Center’s morphing technique (CMORPH) during May–August of 2003–09. The areas of focus are the Yanshan–Taihangshan Mountain ranges along the east peripheries of the Loess and Inner Mongolian Plateaus and the adjacent North China Plains. It is found that the averaged peak in local precipitation begins early in the afternoon near the top of the mountain ranges and propagates downslope and southeastward at a speed of ∼13 m s−1. The peak reaches the central North China Plains around midnight and the early morning hours resulting in a broad area of nocturnal precipitation maxima over the plains. The diurnal precipitation peak (minimum) is closely collocated with the upward (downward) branch of a mountain–plains solenoid (MPS) circulation. Both the MPS and a low-level southwesterly nocturnal jet are likely to be jointly responsible for the nighttime precipitation maxima over the plains.


2008 ◽  
Vol 136 (9) ◽  
pp. 3477-3500 ◽  
Author(s):  
Marie Lothon ◽  
Frédérique Saïd ◽  
Fabienne Lohou ◽  
Bernard Campistron

Abstract The authors give an overview of the diurnal cycle of the low troposphere during 2006 at two different sites, Niamey (Niger) and Nangatchori (Benin). This study is partly based on the first observations of UHF wind profilers ever made in West Africa in the context of the African Monsoon Multidisciplinary Analysis (AMMA) project. Also used are the radiosoundings made in Niamey and ground station observations at Nangatchori, which allow for the study of the impact of the dynamics on the water vapor cycle and the turbulence observed at the ground. Profiler measurements revealed a very consistent year-round nocturnal low-level jet maximal around 0500 UTC and centered at 400-m above the ground, with wind speed around 15 m s−1. This jet comes either from the northeast during the dry season or from the southwest during the wet season, in relation with the position of the intertropical discontinuity. The radiosoundings made in Niamey highlight both the role of the nocturnal jet in bringing water vapor from the south during the night when the intertropical discontinuity has reached the vicinity of the considered area at the end of the dry season and the role of the daytime planetary boundary layer in mixing this water vapor within a larger depth of the troposphere. The planetary boundary layer processes play a large role in the diurnal cycle of the position of the intertropical discontinuity itself. The observations of turbulence made at the ground in Nangatchori showed that the best signature of the nocturnal jet close to surface can be seen in the turbulent kinetic energy and skewness of the air vertical velocity, rather than on the mean wind itself. They reveal the downward transport of momentum from the jet core aloft to the surface.


2008 ◽  
Vol 123 (5) ◽  
pp. 3922-3922
Author(s):  
Roger Waxler ◽  
Kenneth E Gilbert ◽  
Carrick L. Talmadge ◽  
Xiao Di
Keyword(s):  

2007 ◽  
Vol 20 (15) ◽  
pp. 4014-4032 ◽  
Author(s):  
Benjamin Sultan ◽  
Serge Janicot ◽  
Philippe Drobinski

Abstract This study investigates the diurnal cycle of the West African monsoon and its seasonal modulation with particular focus on the monsoon onset period. A composite analysis around the monsoon onset date is applied to the 1979–2000 NCEP–DOE reanalysis and 40-yr ECMWF Re-Analysis (ERA-40) at 0000, 0600, 1200, and 1800 UTC. This study points out two independent modes describing the space–time variability of the diurnal cycle of low-level wind and temperature. While the first mode appears to belong to a gradual and seasonal pattern linked with the northward migration of the whole monsoon system, the second mode is characterized by more rapid time variations with a peak of both temperature and wind anomalies around the monsoon onset date. This latter mode is connected with the time pattern of a nocturnal jet reaching its highest values around the onset date. The diurnal cycle of dry and deep convection is also investigated through the same method. A distinct diurnal cycle of deep convection in the ITCZ is evidenced with a peak at 1200 UTC before the monsoon onset, and at 1800 UTC after the monsoon onset. Strong ascending motions associated with deep convection may generate a gravity wave that propagates northward and reaches the Saharan heat low region 12 h later. The diurnal cycle of the dry convection in the Saharan heat low is similar during the preonset and the postonset periods with a peak at night (0000 UTC) consistent with the nocturnal jet intensification. This convection is localized at 15° and 20°N before and after the monsoon onset, respectively. Both during the first rainy season in spring and the monsoon season in summer, the nocturnal jet brings moisture in the boundary layer north of the ITCZ favoring humidification and initiation of new convective cells, helping the northward progression of the ITCZ. At the end of the summer the southward return of the ITCZ is associated with the disappearance of the core of the monsoon jet. Despite a lot of similarities between the results obtained using NCEP–DOE and ERA-40 reanalyses, giving confidence in the significance of these results, some differences are identified, especially in the diurnal cycle of deep convection, which limit the interpretation of some of these results and highlight discrepancies in the reanalyses.


2004 ◽  
Vol 61 (9) ◽  
pp. 1079-1085 ◽  
Author(s):  
Rod Frehlich ◽  
Yannick Meillier ◽  
Michael L. Jensen ◽  
Ben Balsley

Weather ◽  
2002 ◽  
Vol 57 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Anders Persson

Sign in / Sign up

Export Citation Format

Share Document