scholarly journals Revisiting the Influence of the Quasi-Biennial Oscillation on Tropical Cyclone Activity

2010 ◽  
Vol 23 (21) ◽  
pp. 5810-5825 ◽  
Author(s):  
Suzana J. Camargo ◽  
Adam H. Sobel

Abstract The statistical relationship between the quasi-biennial oscillation (QBO) and tropical cyclone (TC) activity is explored, with a focus on the North Atlantic. Although there is a statistically significant relationship between the QBO and TCs in the Atlantic from the 1950s to the 1980s, as found by previous studies, that relationship is no longer present in later years. Several possibilities for this change are explored, including the interaction with ENSO, volcanoes, QBO decadal variability, and interactions with solar forcing. None provides a completely satisfying explanation. In the other basins, the relationship is weaker than in the Atlantic, even in the early record.

2008 ◽  
Vol 21 (15) ◽  
pp. 3929-3935 ◽  
Author(s):  
Philip J. Klotzbach ◽  
William M. Gray

Abstract Recent increases in Atlantic basin tropical cyclone activity since 1995 and the associated destructive U.S. landfall events in 2004 and 2005 have generated considerable interest into why there has been such a sharp upturn. Natural variability, human-induced global warming, or a combination of both factors, have been suggested. Several previous studies have discussed observed multidecadal variability in the North Atlantic over 25–40-yr time scales. This study, using data from 1878 to the present, creates a metric based on far North Atlantic sea surface temperature anomalies and basinwide North Atlantic sea level pressure anomalies that shows remarkable agreement with observed multidecadal variability in both Atlantic basin tropical cyclone activity and in U.S. landfall frequency.


2014 ◽  
Vol 27 (17) ◽  
pp. 6404-6422 ◽  
Author(s):  
Ray Bell ◽  
Kevin Hodges ◽  
Pier Luigi Vidale ◽  
Jane Strachan ◽  
Malcolm Roberts

Abstract This study assesses the influence of the El Niño–Southern Oscillation (ENSO) on global tropical cyclone activity using a 150-yr-long integration with a high-resolution coupled atmosphere–ocean general circulation model [High-Resolution Global Environmental Model (HiGEM); with N144 resolution: ~90 km in the atmosphere and ~40 km in the ocean]. Tropical cyclone activity is compared to an atmosphere-only simulation using the atmospheric component of HiGEM (HiGAM). Observations of tropical cyclones in the International Best Track Archive for Climate Stewardship (IBTrACS) and tropical cyclones identified in the Interim ECMWF Re-Analysis (ERA-Interim) are used to validate the models. Composite anomalies of tropical cyclone activity in El Niño and La Niña years are used. HiGEM is able to capture the shift in tropical cyclone locations to ENSO in the Pacific and Indian Oceans. However, HiGEM does not capture the expected ENSO–tropical cyclone teleconnection in the North Atlantic. HiGAM shows more skill in simulating the global ENSO–tropical cyclone teleconnection; however, variability in the Pacific is overpronounced. HiGAM is able to capture the ENSO–tropical cyclone teleconnection in the North Atlantic more accurately than HiGEM. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity, is used to further understand the response of tropical cyclone activity to ENSO in the North Atlantic and western North Pacific. The vertical wind shear response over the Caribbean is not captured in HiGEM compared to HiGAM and ERA-Interim. Biases in the mean ascent at 500 hPa in HiGEM remain in HiGAM over the western North Pacific; however, a more realistic low-level vorticity in HiGAM results in a more accurate ENSO–tropical cyclone teleconnection.


2019 ◽  
Vol 54 (3-4) ◽  
pp. 1683-1698
Author(s):  
Mengyuan Quan ◽  
Xidong Wang ◽  
Guidi Zhou ◽  
Kaigui Fan ◽  
Zikang He

2014 ◽  
Vol 62 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Miriam Fendeková ◽  
Pavla Pekárová ◽  
Marián Fendek ◽  
Ján Pekár ◽  
Peter Škoda

Abstract Changes in runoff parameters are very important for Slovakia, where stream-flow discharges, being supplied by precipitation and groundwater runoff, are preferentially influenced by climatic conditions. Therefore, teleconnections between runoff parameters, climate parameters and global atmospheric drivers such as North Atlantic Oscillation, Southern Pacific Oscillation, Quasi-biennial oscillation and solar activity were studied in the Nitra River Basin, Slovakia. Research was mostly based on records of 80 years (1931-2010) for discharges and baseflow, and 34 years for groundwater heads. Methods of autocorrelation, spectral analysis, cross-correlation and coherence function were used. Results of auto- correllograms for discharges, groundwater heads and base flow values showed a very distinct 11-year and 21-year periodicity. Spectrogram analysis documented the 11-year, 7.8-year, 3.6-year and 2.4-year periods in the discharge, precipitation and air temperature time series. The same cycles except of 11-years were also identified in the long-term series of the North Atlantic Oscillation and Southern Pacific Oscillation indices. The cycle from approximately 2.3 to 2.4-years is most likely connected with Quasi-biennial oscillation. The close negative correlation between the North Atlantic Oscillation winter index and the hydrological surface and groundwater parameters can be used for their prediction within the same year and also for one year in advance.


Sign in / Sign up

Export Citation Format

Share Document