scholarly journals Winter Persistence Barrier of Sea Surface Temperature in the Northern Tropical Atlantic Associated with ENSO

2011 ◽  
Vol 24 (9) ◽  
pp. 2285-2299 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li

Abstract This study investigates the persistence characteristics of the sea surface temperature anomaly (SSTA) in the northern tropical Atlantic (NTA). It is found that a persistence barrier exists around December and January. This winter persistence barrier (WPB) is prominent during the mature phase of strong ENSO events but becomes indistinct during weak ENSO and normal (non-ENSO) events. During strong El Niño events, the NTA SSTA shows a reversal in sign and a rapid warming during December and January. It is possible that this SSTA sign reversal reduces the persistence, leading to the occurrence of the NTA WPB. The present analyses indicate a dynamic relationship among the Pacific ENSO, the NTA SSTA, and the NTA WPB on a quasi-biennial time scale: a strong El Niño event is usually preceded by a strong La Niña event, which leads to a sign reversal of the NTA SSTA in winter as a delayed response to ENSO, finally resulting in the NTA WPB. Analyses also suggest that the NTA WPB is affected by the North Atlantic Oscillation (NAO). The NAO enhances the persistence of the NTA SSTA during winter, tending to weaken the NTA WPB.

2012 ◽  
Vol 25 (23) ◽  
pp. 8177-8195 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li

Abstract This study confirms a weak spring persistence barrier (SPB) of sea surface temperature anomalies (SSTAs) in the western tropical Indian Ocean (WIO), a strong fall persistence barrier (FPB) in the South China Sea (SCS), and the strongest winter persistence barrier (WPB) in the southeastern tropical Indian Ocean (SEIO). During El Niño events, a less abrupt sign reversal of SSTAs occurs in the WIO during spring, an abrupt reversal occurs in the SCS during fall, and the most abrupt reversal occurs in the SEIO during winter. The sign reversal of SSTA implies a rapid decrease in SSTA persistence, which is favorable for the occurrence of a persistence barrier. The present results indicate that a more abrupt reversal of SSTA sign generally corresponds to a more prominent persistence barrier. El Niño–induced changes in atmospheric circulation result in reduced evaporation and suppressed convection. This in turn leads to the warming over much of the TIO basin, which is an important mechanism for the abrupt switch in SSTA, from negative to positive, in the northern SCS and SEIO. The seasonal cycle of the prevailing surface winds has a strong influence on the timing of the persistence barriers in the TIO. The Indian Ocean dipole (IOD) alone can cause a weak WPB in the SEIO. El Niño events co-occurring with positive IOD further strengthen the SEIO WPB. The SEIO WPB appears to be more strongly influenced by ENSO than by the IOD. In contrast, the WIO SPB and the SCS FPB are relatively independent of the IOD.


2005 ◽  
Vol 6 (4) ◽  
pp. 550-570 ◽  
Author(s):  
Yongkang Xue ◽  
Jinjun Ji ◽  
Shufen Sun ◽  
Guoxiong Wu ◽  
K-M. Lau ◽  
...  

Abstract This is an exploratory study to investigate the spatial and temporal characteristics of east China’s (EC) river runoff and their relationship with precipitation and sea surface temperature (SST) at the continental scale. Monthly mean data from 72 runoff stations and 160 precipitation stations in EC, covering a period between 1951 and 1983, are used for this study. The station river runoff data have been spatially interpolated onto 1° grid boxes as runoff depth based on an extracted drainage network. Comparing runoff depth with precipitation shows that seasonal variation in runoff is consistent with the development of the summer monsoon, including the delayed response of runoff in several subregions. The dominant spatial scales and temporal patterns of summer runoff and precipitation are studied with empirical orthogonal function (EOF) analysis and wavelet analyses. The analyses show interannual, biennial, and longer-term variations in the EOF modes. South–north dipole anomaly patterns for the first two runoff EOF’s spatial distributions have been identified. The first/second runoff principal components (PCs) are highly correlated with the second/first precipitation PCs, respectively. The summer runoff’s EOF PCs also show significant correlations with the multivariate El Niño–Southern Oscillation index (MEI) of the summer and winter months, while the summer precipitation PCs do not. Statistic analysis shows that EOF1 of runoff and EOF2 of precipitation are related to El Niño, while EOF2 of runoff and EOF1 of precipitation are related to a dipole SST anomaly over the northwestern Pacific. The interdecadal relationship between summer runoff, precipitation, and SST variability is further studied by singular value decomposition (SVD) analysis. Pronounced warming (SST) and drying (runoff) trends in first SVD PCs have been identified. These SVDs are used to reconstruct a decadal anomaly pattern, which produces flooding in part of the Chang Jiang River basin and dryness in the northern EC, consistent with observations.


Sign in / Sign up

Export Citation Format

Share Document