Reconstruction of the Extratropical NH Mean Temperature over the Last Millennium with a Method that Preserves Low-Frequency Variability

2011 ◽  
Vol 24 (23) ◽  
pp. 6013-6034 ◽  
Author(s):  
Bo Christiansen ◽  
Fredrik Charpentier Ljungqvist

Abstract A new multiproxy reconstruction of the Northern Hemisphere extratropical mean temperature over the last millennium is presented. The reconstruction is performed with a novel method designed to avoid the underestimation of low-frequency variability that has been a general problem for regression-based reconstruction methods. The disadvantage of this method is an exaggerated high-frequency variability. The reconstruction is based on a set of 40 proxies of annual to decadal resolution that have been shown to relate to the local temperature. The new reconstruction shows a very cold Little Ice Age centered around the 17th century with a cold extremum (for 50-yr smoothing) of about 1.1 K below the temperature of the calibration period, AD 1880–1960. This cooling is about twice as large as corresponding numbers reported by most other reconstructions. In the beginning of the millennium the new reconstruction shows small anomalies in agreement with previous studies. However, the new temperature reconstruction decreases faster than previous reconstructions in the first 600 years of the millennium and has a stronger variability. The salient features of the new reconstruction are shown to be robust to changes in the calibration period, the source of the local temperatures, the spatial averaging procedure, and the screening process applied to the proxies. An ensemble pseudoproxy approach is applied to estimate the confidence intervals of the 50-yr smoothed reconstruction showing that the period AD 1500–1850 is significantly colder than the calibration period.

2019 ◽  
Vol 32 (14) ◽  
pp. 4547-4566
Author(s):  
Kyung-Sook Yun ◽  
Axel Timmermann

Abstract Several climate field reconstruction methods assume stationarity between the leading patterns of variability identified during the instrumental calibration period and the reconstruction period. We examine how and to what extent this restrictive assumption may generate uncertainties in reconstructing past tropical Pacific climate variability. Based on the Last Millennium (850–2005 CE) ensemble simulations conducted with the Community Earth System Model and by developing a series of pseudoproxy reconstructions for different calibration periods, we find that the overall reconstruction skill for global and more regional-scale climate indices depends significantly on the magnitude of externally forced global mean temperature variability during the chosen calibration period. This effect strongly reduces the fidelity of reconstructions of decadal to centennial-scale tropical climate variability, associated with the interdecadal Pacific oscillation (IPO) and centennial-scale temperature shifts between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). In contrast, our pseudoproxy-based analysis demonstrates that reconstructions of interannual El Niño–Southern Oscillation (ENSO) variability are more robust and less affected by changes in calibration period.


2013 ◽  
Vol 9 (3) ◽  
pp. 2277-2308
Author(s):  
R. de Jong ◽  
L. von Gunten ◽  
A. Maldonado ◽  
M. Grosjean

Abstract. High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr long austral summer (November to February) temperature reconstruction derived from the 210Pb and 14C dated organic sediments of Laguna Chepical (32°16' S/70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and Southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca AD 1400, long term temperature patterns were generally similar at low and high altitudes in central Chile.


2011 ◽  
Vol 24 (3) ◽  
pp. 674-692 ◽  
Author(s):  
Bo Christiansen

Abstract There are indications that hemispheric-mean climate reconstructions seriously underestimate the amplitude of low-frequency variability and trends. Some of the theory of linear regression and error-in-variables models is reviewed to identify the sources of this problem. On the basis of the insight gained, a reconstruction method that is supposed to minimize the underestimation is formulated. The method consists of reconstructing the local temperatures at the geographical locations of the proxies, followed by calculating the hemispheric average. The method is tested by applying it to an ensemble of surrogate temperature fields based on two climate simulations covering the last 500 and 1000 yr. Compared to the regularized expectation maximization (RegEM) truncated total least squares (TTLS) method and a composite-plus-scale method—two methods recently used in the literature—the new method strongly improves the behavior regarding low-frequency variability and trends. The potential importance in real-world situations is demonstrated by applying the methods to a set of 14 decadally smoothed proxies. Here the new method shows much larger low-frequency variability and a much colder preindustrial temperature level than the other reconstruction methods. However, this should mainly be seen as a demonstration of the potential losses and gains of variability, as the reconstructions based on the 14 decadally smoothed proxies are not very robust.


2012 ◽  
Vol 25 (22) ◽  
pp. 7991-7997 ◽  
Author(s):  
Anders Moberg

Abstract Christiansen and Ljungqvist have presented an extratropical NH temperature reconstruction using a method (LOC) that they claim “preserves” low-frequency variability, at the expense of exaggerated high-frequency variability. Using theoretical arguments and a pseudoproxy experiment, it is demonstrated here that the LOC method is not guaranteed to preserve variability at any frequency. Rather, LOC reconstructions will have more variance than true large-scale temperature averages at all frequencies. This variance inflation, however, can be negligible at those frequencies where the noise variance in individual proxies is small enough to be effectively cancelled when computing an average over the available proxies. Because the proxy noise variance at low frequencies cannot be directly estimated, and thus has to be regarded as unknown, it is safer to regard a reconstruction with the LOC method as providing an estimate of the upper bound of the large-scale low-frequency temperature variability rather than one with a correct estimate of this variance.


2010 ◽  
Vol 6 (4) ◽  
pp. 445-460 ◽  
Author(s):  
J. Servonnat ◽  
P. Yiou ◽  
M. Khodri ◽  
D. Swingedouw ◽  
S. Denvil

Abstract. Studying the climate of the last millennium gives the possibility to deal with a relatively well-documented climate essentially driven by natural forcings. We have performed two simulations with the IPSLCM4 climate model to evaluate the impact of Total Solar Irradiance (TSI), CO2 and orbital forcing on secular temperature variability during the preindustrial part of the last millennium. The Northern Hemisphere (NH) temperature of the simulation reproduces the amplitude of the NH temperature reconstructions over the last millennium. Using a linear statistical decomposition we evaluated that TSI and CO2 have similar contributions to secular temperature variability between 1425 and 1850 AD. They generate a temperature minimum comparable to the Little Ice Age shown by the temperature reconstructions. Solar forcing explains ~80% of the NH temperature variability during the first part of the millennium (1000–1425 AD) including the Medieval Climate Anomaly (MCA). It is responsible for a warm period which occurs two centuries later than in the reconstructions. This mismatch implies that the secular variability during the MCA is not fully explained by the response of the model to the TSI reconstruction. With a signal-noise ratio (SNR) estimate we found that the temperature signal of the forced simulation is significantly different from internal variability over area wider than ~5.106 km2, i.e. approximately the extent of Europe. Orbital forcing plays a significant role in latitudes higher than 65° N in summer and supports the conclusions of a recent study on an Arctic temperature reconstruction over past two millennia. The forced variability represents at least half of the temperature signal on only ~30% of the surface of the globe. This study suggests that regional reconstructions of the temperature between 1000 and 1850 AD are likely to show weak signatures of solar, CO2 and orbital forcings compared to internal variability.


2013 ◽  
Vol 9 (4) ◽  
pp. 1921-1932 ◽  
Author(s):  
R. de Jong ◽  
L. von Gunten ◽  
A. Maldonado ◽  
M. Grosjean

Abstract. High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr-long austral summer (November to February) temperature reconstruction derived from the 210Pb- and 14C-dated organic sediments of Laguna Chepical (32°16' S, 70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3 yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca. AD 1400, long-term temperature patterns were generally similar at low and high altitudes in central Chile.


2010 ◽  
Vol 6 (2) ◽  
pp. 421-460
Author(s):  
J. Servonnat ◽  
P. Yiou ◽  
M. Khodri ◽  
D. Swingedouw ◽  
S. Denvil

Abstract. Studying the climate of the last millennium gives the possibility to deal with a relatively well-documented climate essentially driven by natural forcings. We have performed two simulations with the IPSLCM4 climate model to evaluate the impact of Total Solar Irradiance (TSI), CO2 and orbital forcing on secular temperature variability during the preindustrial part of the last millennium. The Northern Hemisphere (NH) temperature of the simulation reproduces the amplitude of the NH temperature reconstructions over the last millennium. Using a linear statistical decomposition we evaluated that TSI and CO2 have similar contributions to secular temperature variability between 1425 and 1850 AD. They generate a temperature minimum comparable to the Little Ice Age shown by the temperature reconstructions. Solar forcing explains ~80% of the NH temperature variability during the first part of the millennium (1000–1425 AD) including the Medieval Climate Anomaly (MCA). It is responsible for a warm period which occurs two centuries later than in the reconstructions. This mismatch implies that the secular variability during the MCA is not fully explained by the response of the model to the TSI reconstruction. With a signal-noise ratio (SNR) estimate we found that the temperature signal of the forced simulation is significantly different from internal variability over area wider than ~5.106 km2, i.e. approximately the extent of Europe. Orbital forcing plays a significant role in latitudes higher than 65° N in summer and supports the conclusions of a recent study on an Arctic temperature reconstruction over past two millennia. The forced variability represents at least half of the temperature signal on only ~30% of the surface of the globe. The study of the SNR and local impacts of the forcings suggests that individual temperature reconstructions taken from random location around the Globe are potentially weakly affected by a linear response to external forcings.


2011 ◽  
Vol 7 (6) ◽  
pp. 3991-4035
Author(s):  
B. Christiansen ◽  
F. C. Ljungqvist

Abstract. We present two new multi-proxy reconstructions of the extra-tropical Northern Hemisphere (30–90° N) mean temperature: a two-millennia long reconstruction reaching back to AD 1 based on 32 proxies and a 500-yr long reconstruction reaching back to AD 1500 based on 91 proxies. The proxies are of different types and of different resolutions (annual, annual-to-decadal, and decadal) but all have previously been shown to relate to local or regional temperature. We use a reconstruction method, LOC, that recently has been shown to confidently reproduce low-frequency variability. Confidence intervals are obtained by an ensemble pseudo-proxy method that both estimates the variance and the bias of the reconstructions. The two-millennia long reconstruction shows a well defined Medieval Warm Period with a peak warming ca. AD 950–1050 reaching 0.7 °C relative to the reference period AD 1880–1960. The 500-yr long reconstruction confirms previous results obtained with the LOC method applied to a smaller proxy compilation; in particular it shows the Little Ice Age cumulating in AD 1580–1720 with a temperature minimum of −1.1 °C below the reference period. The reconstructed local temperatures, the magnitude of which are subject to wide confidence intervals, show a rather geographically homogeneous LIA while more geographical inhomogeneities are found for the Medieval Warm Period. Reconstructions based on different number of proxies show only small differences suggesting that LOC reconstructs 50-yr smoothed extra-tropical NH mean temperatures well and that low-frequency noise in the proxies is a relatively small problem.


2009 ◽  
Vol 22 (4) ◽  
pp. 951-976 ◽  
Author(s):  
Bo Christiansen ◽  
T. Schmith ◽  
P. Thejll

Abstract Reconstruction of the earth’s surface temperature from proxy data is an important task because of the need to compare recent changes with past variability. However, the statistical properties and robustness of climate reconstruction methods are not well known, which has led to a heated discussion about the quality of published reconstructions. In this paper a systematic study of the properties of reconstruction methods is presented. The methods include both direct hemispheric-mean reconstructions and field reconstructions, including reconstructions based on canonical regression and regularized expectation maximization algorithms. The study will be based on temperature fields where the target of the reconstructions is known. In particular, the focus will be on how well the reconstructions reproduce low-frequency variability, biases, and trends. A climate simulation from an ocean–atmosphere general circulation model of the period a.d. 1500–1999, including both natural and anthropogenic forcings, is used. However, reconstructions include a large element of stochasticity, and to draw robust statistical interferences, reconstructions of a large ensemble of realistic temperature fields are needed. To this end a novel technique has been developed to generate surrogate fields with the same temporal and spatial characteristics as the original surface temperature field from the climate model. Pseudoproxies are generated by degrading a number of gridbox time series. The number of pseudoproxies and the relation between the pseudoproxies and the underlying temperature field are determined realistically from Mann et al. It is found that all reconstruction methods contain a large element of stochasticity, and it is not possible to compare the methods and draw conclusions from a single or a few realizations. This means that very different results can be obtained using the same reconstruction method on different surrogate fields. This might explain some of the recently published divergent results. Also found is that the amplitude of the low-frequency variability in general is underestimated. All methods systematically give large biases and underestimate both trends and the amplitude of the low-frequency variability. The underestimation is typically 20%–50%. The shape of the low-frequency variability, however, is well reconstructed in general. Some potential in validating the methods on independent data is found. However, to gain information about the reconstructions’ ability to capture the preindustrial level it is necessary to consider the average level in the validation period and not the year-to-year correlations. The influence on the reconstructions of the number of proxies, the type of noise used to generate the proxies, the strength of the variability, as well as the effect of detrending the data prior to the calibration is also reported.


Sign in / Sign up

Export Citation Format

Share Document