scholarly journals Comments on “Reconstruction of the Extratropical NH Mean Temperature over the Last Millennium with a Method That Preserves Low-Frequency Variability”

2012 ◽  
Vol 25 (22) ◽  
pp. 7991-7997 ◽  
Author(s):  
Anders Moberg

Abstract Christiansen and Ljungqvist have presented an extratropical NH temperature reconstruction using a method (LOC) that they claim “preserves” low-frequency variability, at the expense of exaggerated high-frequency variability. Using theoretical arguments and a pseudoproxy experiment, it is demonstrated here that the LOC method is not guaranteed to preserve variability at any frequency. Rather, LOC reconstructions will have more variance than true large-scale temperature averages at all frequencies. This variance inflation, however, can be negligible at those frequencies where the noise variance in individual proxies is small enough to be effectively cancelled when computing an average over the available proxies. Because the proxy noise variance at low frequencies cannot be directly estimated, and thus has to be regarded as unknown, it is safer to regard a reconstruction with the LOC method as providing an estimate of the upper bound of the large-scale low-frequency temperature variability rather than one with a correct estimate of this variance.

1989 ◽  
Vol 134 ◽  
pp. 529-530
Author(s):  
Ann E. Wehrle

Sholomitskii (1965) discovered that the flux density of the quasar CTA 102 varies at low frequencies on a timescale of a few months. Low-frequency variability can be explained by “superluminal flux variation” (Romney et al. 1984): If the intrinsic brightness of a component moving in a relativistically beamed source varies by only a few percent, the observer sees its flux density change by a much larger factor δ3-α when the optically thin blob moves almost directly toward the observer. Such a relativistically beamed source is likely to exhibit superluminal motion if studied with sufficient resolution and sensitivity. Superluminal motion in CTA 102 was discovered by Bååth (1987) who concluded on the basis of maps made at three epochs at a frequency of 932 MHz that two components were separating at a rate of 0.65 milliarcseconds (mas) per year. Using a redshift z = 1.037 and H0 = 100 km s−1 Mpc−1, q0 = 0.5, this expansion speed corresponds to (18 ± 4)h−1c. The extraordinarily high speed led us to make VLBI images of the source at a higher frequency in order to increase the resolution and make a more precise determination of the speed.


1999 ◽  
Vol 276 (1) ◽  
pp. R178-R183 ◽  
Author(s):  
Philippe Van De Borne ◽  
Martin Hausberg ◽  
Robert P. Hoffman ◽  
Allyn L. Mark ◽  
Erling A. Anderson

The exact mechanisms for the decrease in R-R interval (RRI) during acute physiological hyperinsulinemia with euglycemia are unknown. Power spectral analysis of RRI and microneurographic recordings of muscle sympathetic nerve activity (MSNA) in 16 normal subjects provided markers of autonomic control during 90-min hyperinsulinemic/euglycemic clamps. By infusing propranolol and insulin ( n = 6 subjects), we also explored the contribution of heightened cardiac sympathetic activity to the insulin-induced decrease in RRI. Slight decreases in RRI ( P < 0.001) induced by sevenfold increases in plasma insulin could not be suppressed by propranolol. Insulin increased MSNA by more than twofold ( P < 0.001), decreased the high-frequency variability of RRI ( P< 0.01), but did not affect the absolute low-frequency variability of RRI. These results suggest that reductions in cardiac vagal tone and modulation contribute at least in part to the reduction in RRI during hyperinsulinemia. Moreover, more than twofold increases in MSNA occurring concurrently with a slight and not purely sympathetically mediated tachycardia suggest regionally nonuniform increases in sympathetic activity during hyperinsulinemia in humans.


2011 ◽  
Vol 24 (14) ◽  
pp. 3609-3623 ◽  
Author(s):  
Fiona Johnson ◽  
Seth Westra ◽  
Ashish Sharma ◽  
Andrew J. Pitman

Abstract Climate change impact studies for water resource applications, such as the development of projections of reservoir yields or the assessment of likely frequency and amplitude of drought under a future climate, require that the year-to-year persistence in a range of hydrological variables such as catchment average rainfall be properly represented. This persistence is often attributable to low-frequency variability in the global sea surface temperature (SST) field and other large-scale climate variables through a complex sequence of teleconnections. To evaluate the capacity of general circulation models (GCMs) to accurately represent this low-frequency variability, a set of wavelet-based skill measures has been developed to compare GCM performance in representing interannual variability with the observed global SST data, as well as to assess the extent to which this variability is imparted in precipitation and surface pressure anomaly fields. A validation of the derived skill measures is performed using GCM precipitation as an input in a reservoir storage context, with the accuracy of reservoir storage estimates shown to be improved by using GCM outputs that correctly represent the observed low-frequency variability. Significant differences in the performance of different GCMs is demonstrated, suggesting that judicious selection of models is required if the climate impact assessment is sensitive to low-frequency variability. The two GCMs that were found to exhibit the most appropriate representation of global low-frequency variability for individual variables assessed were the Istituto Nazionale di Geofisica e Vulcanologia (INGV) ECHAM4 and L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4); when considering all three variables, the Max Planck Institute (MPI) ECHAM5 performed well. Importantly, models that represented interannual variability well for SST also performed well for the other two variables, while models that performed poorly for SST also had consistently low skill across the remaining variables.


2011 ◽  
Vol 41 (2) ◽  
pp. 365-377 ◽  
Author(s):  
Thomas Kilpatrick ◽  
Niklas Schneider ◽  
Emanuele Di Lorenzo

Abstract The generation of variance by anomalous advection of a passive tracer in the thermocline is investigated using the example of density-compensated temperature and salinity anomalies, or spiciness. A coupled Markov model is developed in which wind stress curl forces the large-scale baroclinic ocean pressure that in turn controls the anomalous geostrophic advection of spiciness. The “double integration” of white noise atmospheric forcing by this Markov model results in a frequency (ω) spectrum of large-scale spiciness proportional to ω−4, so that spiciness variability is concentrated at low frequencies. An eddy-permitting regional model hindcast of the northeast Pacific (1950–2007) confirms that time series of large-scale spiciness variability are exceptionally smooth, with frequency spectra ∝ ω−4 for frequencies greater than 0.2 cpy. At shorter spatial scales (wavelengths less than ∼500 km), the spiciness frequency spectrum is whitened by mesoscale eddies, but this eddy-forced variability can be filtered out by spatially averaging. Large-scale and long-term measurements are needed to observe the variance of spiciness or any other passive tracer subject to anomalous advection in the thermocline.


1987 ◽  
Vol 44 (1) ◽  
pp. 26-39 ◽  
Author(s):  
J. Anthony Koslow ◽  
Keith R. Thompson ◽  
William Silvert

Year-class success of both Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) stocks in the northwest Atlantic exhibits large-scale coherence and low-frequency variability with apparent periodicities of 10–20 yr. Several physical and biological variables in the region exhibit similar large-scale coherence and apparent periodicity. Multiple regression analysis indicates that year-class success in northwest Atlantic cod stocks tends to be associated with large-scale meteorological patterns and offshore winds. Recruitment to most haddock stocks from the Scotian Shelf to Georges Bank is negatively associated with abundance of 0-group mackerel, which may be due to predation over winter and/or to a combination of environmental features including sea-surface temperature, large-scale atmospheric pressure systems, and freshwater outflows. Statistical analyses often did not define a unique set of variables that best predicted fishery recruitment due to widespread intercorrelations among environmental processes and the likelihood that not all relevant processes entered directly into the analyses. There is little evidence that stock reproductive output during the study period was significantly related to year-class success.


2008 ◽  
Vol 21 (19) ◽  
pp. 4901-4918 ◽  
Author(s):  
Kristopher B. Karnauskas ◽  
Antonio J. Busalacchi ◽  
Raghu Murtugudde

Abstract The low-frequency variability of gap winds at the Isthmuses of Tehuantepec and Papagayo is investigated using a 17-yr wind stress dataset merging the remotely sensed observations of Special Sensor Microwave Imager (SSM/I) and Quick Scatterometer (QuikSCAT) satellite sensors. A decadal signal is identified in the Tehuantepec gap winds, which is shown to be related to the Atlantic tripole pattern (ATP). Using linear regression and spectral analysis, it is demonstrated that the low-frequency variability of the Tehuantepec gap winds is remotely forced by the ATP, and the Papagayo gap winds are primarily governed by El Niño–Southern Oscillation (ENSO) with the ATP being of secondary importance. The Tehuantepec (Papagayo) time series of wind stress anomalies can be better reconstructed when the local cross-isthmus pressure difference and large-scale climate information such as the ATP (ENSO) are included, suggesting that there is important information in the large-scale flow that is not transmitted directly through the background sea level pressure gradient. The geostrophic modulation of the easterly trades in the western Caribbean also serve as a remote driver of the Papagayo gap winds, which is itself not fully independent from ENSO. Finally, it is suggested that precipitation variability in the Inter-Americas region is closely related to the same remote forcing as that of the Tehuantepec gap winds, being the ATP and associated large-scale atmospheric circulation.


2011 ◽  
Vol 24 (23) ◽  
pp. 6013-6034 ◽  
Author(s):  
Bo Christiansen ◽  
Fredrik Charpentier Ljungqvist

Abstract A new multiproxy reconstruction of the Northern Hemisphere extratropical mean temperature over the last millennium is presented. The reconstruction is performed with a novel method designed to avoid the underestimation of low-frequency variability that has been a general problem for regression-based reconstruction methods. The disadvantage of this method is an exaggerated high-frequency variability. The reconstruction is based on a set of 40 proxies of annual to decadal resolution that have been shown to relate to the local temperature. The new reconstruction shows a very cold Little Ice Age centered around the 17th century with a cold extremum (for 50-yr smoothing) of about 1.1 K below the temperature of the calibration period, AD 1880–1960. This cooling is about twice as large as corresponding numbers reported by most other reconstructions. In the beginning of the millennium the new reconstruction shows small anomalies in agreement with previous studies. However, the new temperature reconstruction decreases faster than previous reconstructions in the first 600 years of the millennium and has a stronger variability. The salient features of the new reconstruction are shown to be robust to changes in the calibration period, the source of the local temperatures, the spatial averaging procedure, and the screening process applied to the proxies. An ensemble pseudoproxy approach is applied to estimate the confidence intervals of the 50-yr smoothed reconstruction showing that the period AD 1500–1850 is significantly colder than the calibration period.


Sign in / Sign up

Export Citation Format

Share Document