scholarly journals A Model Study on the 1988–89 Warming Event in the Northern North Pacific

2003 ◽  
Vol 33 (8) ◽  
pp. 1815-1828 ◽  
Author(s):  
Jing-Jia Luo ◽  
Toshio Yamagata

Abstract Using outputs of a high-resolution ocean general circulation model, upper-ocean heat content budget and mixed layer heat budget are analyzed to investigate the reason for the 1988–89 decadal warming event in the northern North Pacific. The model reproduces realistic upper-ocean temperature changes in comparison with observational data. This analysis suggests that the horizontal mean geostrophic advection of anomalous temperature is the main contributor to the heat content increase around 1988–89, and surface heat flux forcing is the main contributor to increasing mixed layer temperature. The anomalous geostrophic advection of mean temperature plays a negative role in the increase of both the upper-ocean heat content and mixed layer temperature in midlatitudes around 1988–89. Another negative contribution to the mixed layer temperature increase is provided by the Ekman advection. In the Kuroshio Extension region, the warm upper-ocean heat content anomaly appears in 1987–88, in which the mean geostrophic advection also plays a dominant role. South of Japan the decadal warming appears even earlier, around 1985–86. The anomalous Kuroshio transport shows a decadal decreasing trend since the early 1980s and therefore cannot explain the late 1980s warming event in midlatitudes. The 1988–89 event is found to be closely linked with the decadal change of the Kuroshio path south of Japan. It is found that subtropical Rossby waves may influence the decadal temperature changes south of Japan.


2007 ◽  
Vol 37 (11) ◽  
pp. 2682-2697 ◽  
Author(s):  
Shenfu Dong ◽  
Susan L. Hautala ◽  
Kathryn A. Kelly

Abstract Subsurface temperature data in the western North Atlantic Ocean are analyzed to study the variations in the heat content above a fixed isotherm and contributions from surface heat fluxes and oceanic processes. The study region is chosen based on the data density; its northern boundary shifts with the Gulf Stream position and its southern boundary shifts to contain constant volume. The temperature profiles are objectively mapped to a uniform grid (0.5° latitude and longitude, 10 m in depth, and 3 months in time). The interannual variations in upper-ocean heat content show good agreement with the changes in the sea surface height from the Ocean Topography Experiment (TOPEX)/Poseidon altimeter; both indicate positive anomalies in 1994 and 1998–99 and negative anomalies in 1996–97. The interannual variations in surface heat fluxes cannot explain the changes in upper-ocean heat storage rate. On the contrary, a positive anomaly in heat released to the atmosphere corresponds to a positive upper-ocean heat content anomaly. The oceanic heat transport, mainly owing to the geostrophic advection, controls the interannual variations in heat storage rate, which suggests that geostrophic advection plays an important role in the air–sea heat exchange. The 18°C isotherm depth and layer thickness also show good correspondence to the upper-ocean heat content; a deep and thin 18°C layer corresponds to a positive heat content anomaly. The oceanic transport in each isotherm layer shows an annual cycle, converging heat in winter, and diverging in summer in a warm layer; it also shows interannual variations with the largest heat convergence occurring in even warmer layers during the period of large ocean-to-atmosphere flux.



2020 ◽  
Author(s):  
Yue Wang ◽  
Zhimin Jian ◽  
Haowen Dang ◽  
Zhongfang Liu ◽  
Haiyan Jin ◽  
...  

<p>The ocean is the largest heat capacitor of the earth climate system and a main source of atmospheric moist static energy. Especially, upper ocean heat content changes in the tropics can be taken as the heat engine of global climate. Here we provide an orbital scale perspective on changes in OHC obtained from a transient simulation of the Community Earth System Model under orbital insolation and GHG forcings. Considering the vertical stratification of the upper ocean, we calculate OHC for the mixed layer and the upper thermocline layer according to the isotherm depths of 26℃ and 20℃ respectively. Generally, our simulated OHC are dominated by thickness changes rather than temperature changes of each layer. In details, there are three situations according to different forcings:</p><p>(1) Higher GHG induces positive mixed layer OHC anomalies inside the western Pacific warm pool but with neglected anomalies outside it. For the upper thermocline layer, there are negative OHC anomalies inside the warm pool and positive anomalies in the subtropical Pacific of two hemispheres. For the total OHC above 20℃ isotherm depth, positive anomalies mainly come from the mixed layer between 15ºS-15ºN and from the thermocline between 15º-30º. Lower obliquity induces similar spatial patterns of OHC anomalies as those of higher GHG, but total OHC anomalies are more contributed by upper thermocline anomalies.</p><p>(2) Lower precession results in positive mixed layer OHC anomalies in the core of warm pool (150ºE-150ºW, 20ºS-10ºN) and the subtropical northeastern Pacific, but with negative anomalies in other regions of the tropical Pacific. Upper thermocline layer OHC anomalies have similar patterns but with opposite signs relative to the mixed layer in regions between 15ºN-30ºS. As a combination, positive total OHC anomalies occupy large areas of 130ºE-120ºW from 30ºS to10ºN, while negative anomalies dominate the subtropical north Pacific, the western and eastern ends of the tropical Pacific.</p><p>If confirmed by paleoceanographic proxies, our simulated OHC results can be served as the first guide map of anomalous energetic storage & flows in the earth climate system under orbital forcings.</p>





2017 ◽  
Vol 49 (9-10) ◽  
pp. 3293-3307 ◽  
Author(s):  
Shujun Li ◽  
Liping Zhang ◽  
Lixin Wu


2017 ◽  
Vol 74 (2) ◽  
pp. 219-238 ◽  
Author(s):  
Junqiao Feng ◽  
Fei-fei Jin ◽  
Dunxin Hu ◽  
Shoude Guan


2009 ◽  
Vol 114 (C4) ◽  
Author(s):  
Daniela Di Iorio ◽  
Caitlin Sloan


2013 ◽  
Vol 43 (10) ◽  
pp. 2230-2244 ◽  
Author(s):  
Shenfu Dong ◽  
Kathryn A. Kelly

Abstract Formation and the subsequent evolution of the subtropical mode water (STMW) involve various dynamic and thermodynamic processes. Proper representation of mode water variability and contributions from various processes in climate models is important in order to predict future climate change under changing forcings. The North Atlantic STMW, often referred to as Eighteen Degree Water (EDW), in three coupled models, both with data assimilation [GFDL coupled data assimilation (GFDL CDA)] and without data assimilation [GFDL Climate Model, version 2.1 (GFDL CM2.1), and NCAR Community Climate System Model, version 3 (CCSM3)], is analyzed to evaluate how well EDW processes are simulated in those models and to examine whether data assimilation alters the model response to forcing. In comparison with estimates from observations, the data-assimilating model gives a better representation of the formation rate, the spatial distribution of EDW, and its thickness, with the largest EDW variability along the Gulf Stream (GS) path. The EDW formation rate in GFDL CM2.1 is very weak because of weak heat loss from the ocean in the model. Unlike the observed dominant southward movement of the EDW, the EDW in GFDL CM2.1 and CCSM3 moves eastward after formation in the excessively wide GS in the models. However, the GFDL CDA does not capture the observed thermal response of the overlying atmosphere to the ocean. Observations show a robust anticorrelation between the upper-ocean heat content and air–sea heat flux, with upper-ocean heat content leading air–sea heat flux by a few months. This anticorrelation is well captured by GFDL CM2.1 and CCSM3 but not by GFDL CDA. Only GFDL CM2.1 captures the observed anticorrelation between the upper-ocean heat content and EDW volume. This suggests that, although data assimilation corrects the readily observed variables, it degrades the model thermodynamic response to forcing.





Sign in / Sign up

Export Citation Format

Share Document