geostrophic advection
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
pp. 1-49
Author(s):  
Claude Frankignoul ◽  
Elodie Kestenare ◽  
Gilles Reverdin

AbstractMonthly sea surface salinity (SSS) fields are constructed from observations, using objective mapping on a 1°x1° grid in the Atlantic between 30°S and 50°N in the 1970-2016 period in an update of the data set of Reverdin et al. (2007). Data coverage is heterogeneous, with increased density in 2002 when Argo floats become available, high density along Voluntary Observing Ship lines, and low density south of 10°S. Using lag correlation, the seasonal reemergence of SSS anomalies is investigated between 20°N and 50°N in 5°x5° boxes during the 1993-2016 period, both locally and remotely following the displacements of the deep mixed-layer waters estimated from virtual float trajectories derived from the daily AVISO surface geostrophic currents. Although SSS data are noisy, local SSS reemergence is detected in about half of the boxes, notably in the northeast and southeast, while little reemergence is seen in the central and part of the eastern subtropical gyre. In the same period, sea surface temperature (SST) reemergence is found only slightly more frequently, reflecting the short data duration. However, taking geostrophic advection into account degrades the detection of remote SSS and even SST reemergence. When anomalies are averaged over broader areas, robust evidence of a second and third SSS reemergence peak is found in the northeastern and southeastern parts of the domain, indicating long cold-season persistence of large-scale SSS anomalies, while only a first SST reemergence is seen. An oceanic reanalysis is used to confirm that the correlation analysis indeed reflects the reemergence of subsurface salinity anomalies.


2016 ◽  
Vol 56 (4) ◽  
pp. 493-501
Author(s):  
A. Yu. Mikhailov ◽  
A. N. Zolotokrylin ◽  
T. B. Titkova

Winter positions of the Arctic front (AF) during the known periods of the climate cooling (1949–1980) and warming (1981–2012) were analyzed within the sector 10° W – 60° E. The AF positios were determined by the following indicators: 1) a surface pressure; 2) horizontal wind divergence; 3) geostrophic vortex; 4) geostrophic heat advection. The main extrema of these four dynamic characteristics coincide and fall on the latitude 72.5° N. This corresponds to the average position of the AF for a given resolution and confirms correctness of our choice of these characteristics as the AF indicators. Relative differences between mean profiles of all values of the above warm and cold periods were calculated using method of normalization of each value for the corresponding latitude by the standard deviation for the entire period (1949–2012). To study variability of the AF position we used mean yearly winter profiles of the variables under investigation together with the statistical analysis of positions of the extrema within the latitude degrees. For pressure and geostrophic advection positions of the absolute minima were determined while for geostrophic vortex and divergence – positions of the absolute maxima. The data show that according to different criteria the AF average positions for the period 1949–2012 lie within the zone 72.4–73.4 N. The interannual variability of the AF positions lies within the 1–2 degrees of latitude and corresponds to the range of the air temperature variability above the zone of maximal changes in the sea ice area. According to the standard deviation values of the divergence and the geostrophic vortex are the most stable in region of the AF passage. Comparison of differences of the studied characteristics between the warm and cold periods shows that the changes in the AF positions are not statistically significant (P(t) < 91% t‑criterion) unlike the changes in positions of isolines which characterize the warming (P(t) = 100%). Thus, despite significant changes in properties of the surface and the temperature regime to the north of 72.5 N (the warming), according to all the criteria the AF climatic position remains quasi‑stationary for 32‑year periods of averaging.


2015 ◽  
Vol 143 (4) ◽  
pp. 1455-1471 ◽  
Author(s):  
Li Dong ◽  
Stephen J. Colucci

Abstract A generalized frictionless, adiabatic geostrophic zonal wind tendency equation is derived to diagnose the nonquasigeostrophic forcings to blocking onset in the Southern Hemisphere through case study and composite analysis. In general, the quasigeostrophic model is capable of representing the key physical processes associated with blocking onset in the troposphere reasonably well in most blocking cases. The consideration of nonquasigeostrophic forcings moderately improves the quasigeostrophic representation in a majority of the blocking events selected for this study, but not all events. This suggests that the nonquasigeostrophic terms could be important in a specific blocking event but not in a composite meaning. Furthermore, the nonquasigeostrophic forcing of geostrophic advection of ageostrophic relative vorticity term, , is extensively examined in this study. This forcing is found to be the leading nonquasigeostrophic forcing term among all nonquasigeostrophic forcings. In a composite sense, the forcing appears to have an alternative contribution that is dependent upon the curvature of the geostrophic flow within the blocking structure. In general, the southwesterly flow is likely associated with the -favoring effect to blocking onset whereas northwesterly flow is associated with the -opposing effect. Therefore, it is important to use the geostrophic flow pattern prior to blocking onset to foresee this ageostrophic-related nonquasigeostrophic forcing to blocking onset. Finally, a pronounced overestimation of geostrophic zonal wind tendency by the quasigeostrophic model is commonly found for selected blocking events within the stratosphere, in comparison to the nonquasigeostrophic model. This overestimation is essentially caused by geostrophic wind approximation.


2011 ◽  
Vol 41 (2) ◽  
pp. 365-377 ◽  
Author(s):  
Thomas Kilpatrick ◽  
Niklas Schneider ◽  
Emanuele Di Lorenzo

Abstract The generation of variance by anomalous advection of a passive tracer in the thermocline is investigated using the example of density-compensated temperature and salinity anomalies, or spiciness. A coupled Markov model is developed in which wind stress curl forces the large-scale baroclinic ocean pressure that in turn controls the anomalous geostrophic advection of spiciness. The “double integration” of white noise atmospheric forcing by this Markov model results in a frequency (ω) spectrum of large-scale spiciness proportional to ω−4, so that spiciness variability is concentrated at low frequencies. An eddy-permitting regional model hindcast of the northeast Pacific (1950–2007) confirms that time series of large-scale spiciness variability are exceptionally smooth, with frequency spectra ∝ ω−4 for frequencies greater than 0.2 cpy. At shorter spatial scales (wavelengths less than ∼500 km), the spiciness frequency spectrum is whitened by mesoscale eddies, but this eddy-forced variability can be filtered out by spatially averaging. Large-scale and long-term measurements are needed to observe the variance of spiciness or any other passive tracer subject to anomalous advection in the thermocline.


2007 ◽  
Vol 37 (11) ◽  
pp. 2682-2697 ◽  
Author(s):  
Shenfu Dong ◽  
Susan L. Hautala ◽  
Kathryn A. Kelly

Abstract Subsurface temperature data in the western North Atlantic Ocean are analyzed to study the variations in the heat content above a fixed isotherm and contributions from surface heat fluxes and oceanic processes. The study region is chosen based on the data density; its northern boundary shifts with the Gulf Stream position and its southern boundary shifts to contain constant volume. The temperature profiles are objectively mapped to a uniform grid (0.5° latitude and longitude, 10 m in depth, and 3 months in time). The interannual variations in upper-ocean heat content show good agreement with the changes in the sea surface height from the Ocean Topography Experiment (TOPEX)/Poseidon altimeter; both indicate positive anomalies in 1994 and 1998–99 and negative anomalies in 1996–97. The interannual variations in surface heat fluxes cannot explain the changes in upper-ocean heat storage rate. On the contrary, a positive anomaly in heat released to the atmosphere corresponds to a positive upper-ocean heat content anomaly. The oceanic heat transport, mainly owing to the geostrophic advection, controls the interannual variations in heat storage rate, which suggests that geostrophic advection plays an important role in the air–sea heat exchange. The 18°C isotherm depth and layer thickness also show good correspondence to the upper-ocean heat content; a deep and thin 18°C layer corresponds to a positive heat content anomaly. The oceanic transport in each isotherm layer shows an annual cycle, converging heat in winter, and diverging in summer in a warm layer; it also shows interannual variations with the largest heat convergence occurring in even warmer layers during the period of large ocean-to-atmosphere flux.


2003 ◽  
Vol 33 (8) ◽  
pp. 1815-1828 ◽  
Author(s):  
Jing-Jia Luo ◽  
Toshio Yamagata

Abstract Using outputs of a high-resolution ocean general circulation model, upper-ocean heat content budget and mixed layer heat budget are analyzed to investigate the reason for the 1988–89 decadal warming event in the northern North Pacific. The model reproduces realistic upper-ocean temperature changes in comparison with observational data. This analysis suggests that the horizontal mean geostrophic advection of anomalous temperature is the main contributor to the heat content increase around 1988–89, and surface heat flux forcing is the main contributor to increasing mixed layer temperature. The anomalous geostrophic advection of mean temperature plays a negative role in the increase of both the upper-ocean heat content and mixed layer temperature in midlatitudes around 1988–89. Another negative contribution to the mixed layer temperature increase is provided by the Ekman advection. In the Kuroshio Extension region, the warm upper-ocean heat content anomaly appears in 1987–88, in which the mean geostrophic advection also plays a dominant role. South of Japan the decadal warming appears even earlier, around 1985–86. The anomalous Kuroshio transport shows a decadal decreasing trend since the early 1980s and therefore cannot explain the late 1980s warming event in midlatitudes. The 1988–89 event is found to be closely linked with the decadal change of the Kuroshio path south of Japan. It is found that subtropical Rossby waves may influence the decadal temperature changes south of Japan.


Sign in / Sign up

Export Citation Format

Share Document