scholarly journals Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model

2016 ◽  
Vol 97 (5) ◽  
pp. 735-754 ◽  
Author(s):  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
John Fasullo ◽  
Alexandra Jahn ◽  
Laura Landrum ◽  
...  

Abstract The climate of the past millennium provides a baseline for understanding the background of natural climate variability upon which current anthropogenic changes are superimposed. As this period also contains high data density from proxy sources (e.g., ice cores, stalagmites, corals, tree rings, and sediments), it provides a unique opportunity for understanding both global and regional-scale climate responses to natural forcing. Toward that end, an ensemble of simulations with the Community Earth System Model (CESM) for the period 850–2005 (the CESM Last Millennium Ensemble, or CESM-LME) is now available to the community. This ensemble includes simulations forced with the transient evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, land-use conditions, and orbital parameters, both together and individually. The CESM-LME thus allows for evaluation of the relative contributions of external forcing and internal variability to changes evident in the paleoclimate data record, as well as providing a longer-term perspective for understanding events in the modern instrumental period. It also constitutes a dynamically consistent framework within which to diagnose mechanisms of regional variability. Results demonstrate an important influence of internal variability on regional responses of the climate system during the past millennium. All the forcings, particularly large volcanic eruptions, are found to be regionally influential during the preindustrial period, while anthropogenic greenhouse gas and aerosol changes dominate the forced variability of the mid- to late twentieth century.

2019 ◽  
Vol 54 (1-2) ◽  
pp. 793-806 ◽  
Author(s):  
Jonathan Eliashiv ◽  
Aneesh C. Subramanian ◽  
Arthur J. Miller

AbstractA new prototype coupled ocean–atmosphere Ensemble Kalman Filter reanalysis product, the Community Earth System Model using the Data Assimilation Research Testbed (CESM-DART), is studied by comparing its tropical climate variability to other reanalysis products, available observations, and a free-running version of the model. The results reveal that CESM-DART produces fields that are comparable in overall performance with those of four other uncoupled and coupled reanalyses. The clearest signature of differences in CESM-DART is in the analysis of the Madden–Julian Oscillation (MJO) and other tropical atmospheric waves. MJO energy is enhanced over the free-running CESM as well as compared to the other products, suggesting the importance of the surface flux coupling at the ocean–atmosphere interface in organizing convective activity. In addition, high-frequency Kelvin waves in CESM-DART are reduced in amplitude compared to the free-running CESM run and the other products, again supportive of the oceanic coupling playing a role in this difference. CESM-DART also exhibits a relatively low bias in the mean tropical precipitation field and mean sensible heat flux field. Conclusive evidence of the importance of coupling on data assimilation performance will require additional detailed direct comparisons with identically formulated, uncoupled data assimilation runs.


2020 ◽  
Author(s):  
André Jüling ◽  
Anna von der Heydt ◽  
Henk A. Dijkstra

Abstract. Climate variability on multidecadal time scales appears to be organized in pronounced patterns with clear expressions in sea surface temperature, such as the Atlantic Multidecadal Variability and the Pacific Decadal Oscillation. These patterns are now well studied both in observations and global climate models and are important in the attribution of climate change. Results from CMIP5 models have indicated large biases in these patterns with consequences for ocean heat storage variability and eventually the global mean surface temperature. In this paper, we use two multi-century Community Earth System Model simulations at coarse (1°) and fine (0.1°) ocean model horizontal grid spacing to study the effects of the representation of mesoscale ocean flows on major patterns of multidecadal variability. We find that resolving mesoscale ocean flows both improves the characteristics of the modes of variability with respect to observations and increases the amplitude of the heat content variability in the individual ocean basins. The effect on the global mean surface temperature is relatively minor.


2018 ◽  
Vol 115 (51) ◽  
pp. 12944-12949 ◽  
Author(s):  
John T. Fasullo ◽  
R. Steven Nerem

The satellite altimeter record has provided an unprecedented database for understanding sea-level rise and has recently reached a major milestone at 25 years in length. A challenge now exists in understanding its broader significance and its consequences for sea-level rise in the coming decades and beyond. A key question is whether the pattern of altimeter-era change is representative of longer-term trends driven by anthropogenic forcing. In this work, two multimember climate ensembles, the Community Earth System Model (CESM) and the Earth System Model Version 2M (ESM2M), are used to estimate patterns of forced change [also known as the forced response (FR)] and their magnitudes relative to internal variability. It is found that the spatial patterns of 1993–2018 trends in the ensembles correlate significantly with the contemporaneous FRs (0.55 ± 0.10 in the CESM and 0.61 ± 0.09 in the ESM2M) and the 1950–2100 FRs (0.43 ± 0.10 in the CESM and 0.51 ± 0.11 in the ESM2M). Unforced runs for each model show such correlations to be extremely unlikely to have arisen by chance, indicating an emergence of both the altimeter-era and long-term FRs and suggesting a similar emergence in nature. Projected patterns of the FR over the coming decades resemble those simulated during the altimeter era, suggesting a continuation of the forced pattern of change in nature in the coming decades. Notably, elevated rates of rise are projected to continue in regions that are susceptible to tropical cyclones, exacerbating associated impacts in a warming climate.


2021 ◽  
Vol 17 (2) ◽  
pp. 887-911
Author(s):  
Woon Mi Kim ◽  
Christoph C. Raible

Abstract. In this study, we analyze the dynamics of multi-year droughts over the western and central Mediterranean for the period of 850–2099 CE using the Community Earth System Model version 1.0.1. Overall, the model is able to realistically represent droughts over this region, although it shows some biases in representing El Niño–Southern Oscillation (ENSO) variability and mesoscale phenomena that are relevant in the context of droughts over the region. The analysis of the simulations shows that there is a discrepancy among diverse drought metrics in representing duration and frequencies of past droughts in the western and central Mediterranean. The self-calibrated Palmer drought severity index identifies droughts with significantly longer duration than other drought indices during 850–1849 CE. This re-affirms the necessity of assessing a variety of drought indices in drought studies in the paleoclimate context as well. Independent of the choice of the drought index, the analysis of the period 850–1849 CE suggests that Mediterranean droughts are mainly driven by internal variability of the climate system rather than external forcing. Strong volcanic eruptions show no connection to dry conditions but instead are connected to wet conditions over the Mediterranean. The analysis further shows that Mediterranean droughts are characterized by a barotropic high-pressure system together with a positive temperature anomaly over central Europe. This pattern occurs in all seasons of drought years, with stronger amplitudes during winter and spring. The North Atlantic Oscillation (NAO) and ENSO are also involved during Mediterranean multi-year droughts, showing that droughts occur more frequently with positive NAO and La Niña-like conditions. These modes of variability play a more important role during the initial stage of droughts. As a result, the persistence of multi-year droughts is determined by the interaction between the regional atmospheric and soil moisture variables, i.e., the land–atmosphere feedbacks, during the transition years of droughts. These feedbacks are intensified during the period 1850–2099 CE due to the anthropogenic influence, thus reducing the role of modes of variability on droughts in this period. Eventually, the land–atmosphere feedbacks induce a constant dryness over the Mediterranean region for the late 21st century relative to the period 1000–1849 CE.


2015 ◽  
Vol 96 (8) ◽  
pp. 1333-1349 ◽  
Author(s):  
J. E. Kay ◽  
C. Deser ◽  
A. Phillips ◽  
A. Mai ◽  
C. Hannay ◽  
...  

Abstract While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Early results demonstrate the substantial influence of internal climate variability on twentieth- to twenty-first-century climate trajectories. Global warming hiatus decades occur, similar to those recently observed. Internal climate variability alone can produce projection spread comparable to that in CMIP5. Scientists and stakeholders can use CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change.


Sign in / Sign up

Export Citation Format

Share Document