scholarly journals Investigations of Backscatter Differential Phase in the Melting Layer

2014 ◽  
Vol 53 (10) ◽  
pp. 2344-2359 ◽  
Author(s):  
Silke Trömel ◽  
Alexander V. Ryzhkov ◽  
Pengfei Zhang ◽  
Clemens Simmer

AbstractBackscatter differential phase δ within the melting layer has been identified as a reliably measurable but still underutilized polarimetric variable. Polarimetric radar observations at X band in Germany and S band in the United States are presented that show maximal observed δ of 8.5° at X band but up to 70° at S band. Dual-frequency observations at X and C band in Germany and dual-frequency observations at C and S band in the United States are compared to explore the regional frequency dependencies of the δ signature. Theoretical simulations based on usual assumptions about the microphysical composition of the melting layer cannot reproduce the observed large values of δ at the lower-frequency bands and also underestimate the enhancements in differential reflectivity ZDR and reductions in the cross-correlation coefficient ρhυ. Simulations using a two-layer T-matrix code and a simple model for the representation of accretion can, however, explain the pronounced δ signatures at S and C bands in conjunction with small δ at X band. The authors conclude that the δ signature bears information about microphysical accretion and aggregation processes in the melting layer and the degree of riming of the snowflakes aloft.

2006 ◽  
Vol 23 (7) ◽  
pp. 952-963 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Robert Cifelli ◽  
Patrick C. Kennedy ◽  
Steven W. Nesbitt ◽  
Steven A. Rutledge ◽  
...  

Abstract A comparative study of the use of X- and S-band polarimetric radars for rainfall parameter retrievals is presented. The main advantage of X-band polarimetric measurements is the availability of reliable specific differential phase shift estimates, KDP, for lighter rainfalls when phase measurements at the S band are too noisy to produce usable KDP. Theoretical modeling with experimental raindrop size distributions indicates that due to some non-Rayleigh resonant effects, KDP values at a 3.2-cm wavelength (X band) are on average a factor of 3.7 greater than at 11 cm (S band), which is a somewhat larger difference than simple frequency scaling predicts. The non-Rayleigh effects also cause X-band horizontal polarization reflectivity, Zeh, and differential reflectivity, ZDR, to be larger than those at the S band. The differences between X- and S-band reflectivities can exceed measurement uncertainties for Zeh starting approximately at Zeh > 40 dBZ, and for ZDR when the mass-weighted drop diameter, Dm, exceeds about 2 mm. Simultaneous X- and S-band radar measurements of rainfall showed that consistent KDP estimates exceeding about 0.1° km−1 began to be possible at reflectivities greater than ∼26–30 dBZ while at the S band such estimates can generally be made if Zeh > ∼35–39 dBZ. Experimental radar data taken in light-to-moderate stratiform rainfalls with rain rates R in an interval from 2.5 to 15 mm h−1 showed availability of the KDP-based estimates of R for most of the data points at the X band while at the S band such estimates were available only for R greater than about 8–10 mm h−1. After correcting X-band differential reflectivity measurements for differential attenuation, ZDR measurements at both radar frequency bands were in good agreement with each other for Dm < 2 mm, which approximately corresponds to ZDR ≈ 1.6 dB. The ZDR-based retrievals of characteristic raindrop sizes also agreed well with in situ disdrometer measurements.


2019 ◽  
Vol 58 (1) ◽  
pp. 93-112 ◽  
Author(s):  
Zhiyuan Jiang ◽  
Matthew R. Kumjian ◽  
Robert S. Schrom ◽  
Ian Giammanco ◽  
Tanya Brown-Giammanco ◽  
...  

AbstractSevere (>2.5 cm) hail causes >$5 billion in damage annually in the United States. However, radar sizing of hail remains challenging. Typically, spheroids are used to represent hailstones in radar forward operators and to inform radar hail-sizing algorithms. However, natural hailstones can have irregular shapes and lobes; these details significantly influence the hailstone’s scattering properties. The high-resolution 3D structure of real hailstones was obtained using a laser scanner for hail collected during the 2016–17 Insurance Institute for Business and Home Safety (IBHS) Hail Field Study. Plaster casts of several record hailstones (e.g., Vivian, South Dakota, 2010) were also scanned. The S-band scattering properties of these hailstones were calculated with the discrete dipole approximation (DDA). For comparison, scattering properties of spheroidal approximations of each hailstone (with identical maximum and minimum dimensions and mass) were calculated with the T matrix. The polarimetric radar variables have errors when using spheroids, even for small hail. Spheroids generally have smaller variations in the polarimetric variables than the real hailstones. This increased variability is one reason why the correlation coefficient tends to be lower in observations than in forward-simulated cases using spheroids. Backscatter differential phase δ also is found to have large variance, particularly for large hailstones. Irregular hailstones with a thin liquid layer produce enhanced and more variable values for reflectivity factor at horizontal polarization ZHH, differential reflectivity ZDR, specific differential phase KDP, linear depolarization ratio (LDR), and δ compared with dry hailstones; is also significantly reduced.


2019 ◽  
Vol 12 (11) ◽  
pp. 5897-5911 ◽  
Author(s):  
Cuong M. Nguyen ◽  
Mengistu Wolde ◽  
Alexei Korolev

Abstract. This paper presents a methodology for ice water content (IWC) retrieval from a dual-polarization side-looking X-band airborne radar. Measured IWC from aircraft in situ probes is weighted by a function of the radar differential reflectivity (Zdr) to reduce the effects of ice crystal shape and orientation on the variation in IWC – specific differential phase (Kdp) joint distribution. A theoretical study indicates that the proposed method, which does not require a knowledge of the particle size distribution (PSD) and number density of ice crystals, is suitable for high-ice-water-content (HIWC) regions in tropical convective clouds. Using datasets collected during the High Altitude Ice Crystals – High Ice Water Content (HAIC-HIWC) international field campaign in Cayenne, French Guiana (2015), it is shown that the proposed method improves the estimation bias by 35 % and increases the correlation by 4 % on average, compared to the method using specific differential phase (Kdp) alone.


2016 ◽  
Vol 97 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Robert J. Trapp ◽  
David J. Stensrud ◽  
Michael C. Coniglio ◽  
Russ S. Schumacher ◽  
Michael E. Baldwin ◽  
...  

Abstract The Mesoscale Predictability Experiment (MPEX) was a field campaign conducted 15 May through 15 June 2013 within the Great Plains region of the United States. One of the research foci of MPEX regarded the upscaling effects of deep convective storms on their environment, and how these feed back to the convective-scale dynamics and predictability. Balloon-borne GPS radiosondes, or “upsondes,” were used to sample such environmental feedbacks. Two of the upsonde teams employed dual-frequency sounding systems that allowed for upsonde observations at intervals as fast as 15 min. Because these dual-frequency systems also had the capacity for full mobility during sonde reception, highly adaptive and rapid storm-relative sampling of the convectively modified environment was possible. This article documents the mobile sounding capabilities and unique sampling strategies employed during MPEX.


2018 ◽  
Vol 11 (7) ◽  
pp. 3883-3916 ◽  
Author(s):  
Daniel Wolfensberger ◽  
Alexis Berne

Abstract. In this work, a new forward polarimetric radar operator for the COSMO numerical weather prediction (NWP) model is proposed. This operator is able to simulate measurements of radar reflectivity at horizontal polarization, differential reflectivity as well as specific differential phase shift and Doppler variables for ground based or spaceborne radar scans from atmospheric conditions simulated by COSMO. The operator includes a new Doppler scheme, which allows estimation of the full Doppler spectrum, as well a melting scheme which allows representing the very specific polarimetric signature of melting hydrometeors. In addition, the operator is adapted to both the operational one-moment microphysical scheme of COSMO and its more advanced two-moment scheme. The parameters of the relationships between the microphysical and scattering properties of the various hydrometeors are derived either from the literature or, in the case of graupel and aggregates, from observations collected in Switzerland. The operator is evaluated by comparing the simulated fields of radar observables with observations from the Swiss operational radar network, from a high resolution X-band research radar and from the dual-frequency precipitation radar of the Global Precipitation Measurement satellite (GPM-DPR). This evaluation shows that the operator is able to simulate an accurate Doppler spectrum and accurate radial velocities as well as realistic distributions of polarimetric variables in the liquid phase. In the solid phase, the simulated reflectivities agree relatively well with radar observations, but the simulated differential reflectivity and specific differential phase shift upon propagation tend to be underestimated. This radar operator makes it possible to compare directly radar observations from various sources with COSMO simulations and as such is a valuable tool to evaluate and test the microphysical parameterizations of the model.


2021 ◽  
Author(s):  
Anil Kumar Khanal ◽  
Guy Delrieu ◽  
Brice Boudevillain ◽  
Frédéric Cazenave ◽  
Nan Yu

<p>The RadAlp experiment at the Grenoble region in the French Alps aims to advance the radar remote sensing techniques of precipitation in high mountain regions. Since 2016, two dual-polarimetric X-band radars, one on top of Mt Moucherotte (1901 m asl) and another in the Grenoble valley (220 m asl) are operated by Metro France and IGE respectively. High spatio-temporal variability of precipitation (e.g. intensity and phase) in the complex terrain requires high-resolution observations. X-band radar provides high spatial and temporal resolution imagery which makes it ideal for use in complex terrain but also comes with significant attenuation problems during heavy precipitation and in the melting layer (ML). The development of polarimetric techniques, especially differential phase shift (ϕDP) has helped to mitigate the power signal attenuation problem to a certain extent. The ϕDP is immune to attenuation due to rainfall, radar calibration errors and partial beam blockage, making it an attractive parameter for quantitative precipitation estimation (QPE) through attenuation correction of the reflectivity (Z). The ϕDP, however, is quite noisy and requires regularization. An iterative algorithm based on maximum allowed step sizes provides a robust solution in ϕDP regularization. In this study, we aim to understand the relationship between differential phase shift (ϕDP) and path integrated attenuation (PIA) at X-band. This relationship is crucial for quantitative precipitation estimation (QPE) using polarimetric techniques. Furthermore, this relationship is still poorly documented within the melting layer due to the complexity of the hydrometeors' distributions in terms of phase, size, shape and density. We use the mountain reference technique (MRT) for direct PIA estimations associated with the decrease in returns from mountain targets during precipitation events as compared to dry periods. The quasi-vertical profiles from the valley-based radar (XPORT) help to identify, characterize and follow the evolution of the melting layer. For the mountaintop radar (MOUC) stratiform events (59 days between Nov 2016 to Dec 2019) where the O° elevation angle beam passes through the melting layer are considered.  The PIA/ ϕDP ratios at different strata of the ML, snow-ML interface and ML-rain interface are studied. Initial results show that the PIA/ ϕDP ratio peaks at the levels of cross-correlation coefficient (ρHV) minima, remains strong in the upper part of the ML and tends to 0 towards the top of ML. Additionally, its value in rain (0.32 dB per deg) below the ML matches closely with the specific attenuation vs specific phase (k-KDP) relationship (0.29) derived from the disdrometer at ground level.  Its value increases steadily in the lower part of ML (peaks around 0.70 dB per deg), remains strong in the upper part of ML (0.5 - 0.6 dB per degree), and decreases rapidly to 0.13 dB per degree above the ML (in snow).</p>


2013 ◽  
Vol 52 (11) ◽  
pp. 2529-2548 ◽  
Author(s):  
Silke Trömel ◽  
Matthew R. Kumjian ◽  
Alexander V. Ryzhkov ◽  
Clemens Simmer ◽  
Malte Diederich

AbstractOn the basis of simulations and observations made with polarimetric radars operating at X, C, and S bands, the backscatter differential phase δ has been explored; δ has been identified as an important polarimetric variable that should not be ignored in precipitation estimations that are based on specific differential phase KDP, especially at shorter radar wavelengths. Moreover, δ bears important information about the dominant size of raindrops and wet snowflakes in the melting layer. New methods for estimating δ in rain and in the melting layer are suggested. The method for estimating δ in rain is based on a modified version of the “ZPHI” algorithm and provides reasonably robust estimates of δ and KDP in pure rain except in regions where the total measured differential phase ΦDP behaves erratically, such as areas affected by nonuniform beam filling or low signal-to-noise ratio. The method for estimating δ in the melting layer results in reliable estimates of δ in stratiform precipitation and requires azimuthal averaging of radial profiles of ΦDP at high antenna elevations. Comparisons with large disdrometer datasets collected in Oklahoma and Germany confirm a strong interdependence between δ and differential reflectivity ZDR. Because δ is immune to attenuation, partial beam blockage, and radar miscalibration, the strong correlation between ZDR and δ is of interest for quantitative precipitation estimation: δ and ZDR are differently affected by the particle size distribution (PSD) and thus may complement each other for PSD moment estimation. Furthermore, the magnitude of δ can be utilized as an important calibration parameter for improving microphysical models of the melting layer.


Sign in / Sign up

Export Citation Format

Share Document