scholarly journals Analysis of the Planetary Boundary Layer Height during DISCOVER-AQ Baltimore–Washington, D.C., with Lidar and High-Resolution WRF Modeling

2018 ◽  
Vol 57 (11) ◽  
pp. 2679-2696 ◽  
Author(s):  
Jennifer D. Hegarty ◽  
Jasper Lewis ◽  
Erica L. McGrath-Spangler ◽  
John Henderson ◽  
Amy Jo Scarino ◽  
...  

AbstractThe daytime planetary boundary layer (PBL) was examined for the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Baltimore (Maryland)–Washington, D.C., campaign of July 2011 using PBL height (PBLH) retrievals from aerosol backscatter measurements from ground-based micropulse lidar (MPL), the NASA Langley Research Center airborne High Spectral Resolution Lidar-1 (HSRL-1), and the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. High-resolution Weather Research and Forecasting (WRF) Model simulations with horizontal grid spacing of 1 km and different combinations of PBL schemes, urban parameterization, and sea surface temperature inputs were evaluated against PBLHs derived from lidars, ozonesondes, and radiosondes. MPL and WRF PBLHs depicted a growing PBL in the morning that reached a peak height by midafternoon. WRF PBLHs calculated from gridded output profiles generally showed more rapid growth and higher peak heights than did the MPLs, and all WRF–lidar differences were dependent on model configuration, PBLH calculation method, and synoptic conditions. At inland locations, WRF simulated an earlier descent of the PBL top in the afternoon relative to the MPL retrievals and radiosonde PBLHs. At Edgewood, Maryland, the influence of the Chesapeake Bay breeze on the PBLH was captured by both the ozonesonde and WRF data but generally not by the MPL PBLH retrievals because of generally weaker gradients in the aerosol backscatter profile and limited normalized relative backscatter data near the top height of the marine layer.

2020 ◽  
Author(s):  
Martina Messmer ◽  
Santos J. González-Rojí ◽  
Christoph C. Raible ◽  
Thomas F. Stocker

<p>Precipitation patterns and climate variability in East Africa and Western South America present high heterogeneity and complexity. This complexity is a result of large-scale and regional controls, such as surrounding oceans, lakes and topography. The combined effect of these controls has implications on precipitation and temperature, and hence, on water availability, biodiversity and ecosystem services. This study focuses on the impact of different physics parameterization in high-resolution experiments performed over equatorial regions with the Weather Research and Forecasting (WRF) model, and how these options affect the representation of precipitation in those regions.</p><p>As expected, weather and climate in equatorial regions are driven by physical processes different to those important in the mid-latitudes. Hence, it is necessary to test the parameterizations available in the WRF model. Several sensitivity simulations are performed over Kenya and Peru nesting the WRF model inside the state-of-the-art ERA5 reanalysis. A cascade of increasing grid resolutions is used in these simulations, reaching the spatial resolutions of 3 and 1 km in the innermost domains, and thus, convection permitting scales. Parameterization options of the planetary boundary layer (PBL), lake model, radiation, cumulus and microphysics schemes are changed, and their sensitivity to precipitation is tested. The year 2008 is simulated for each of the sensitivity simulations. This year is chosen as a good representative of precipitation dynamics and temperature, as it is neither abnormally wet or hot, nor dry or cold over Kenya and Peru. The simulated precipitation driven by the ERA5 reanalysis is compared against station data obtained from the WMO, and over Kenya additionally against observations from the Centre for Training and Integrated Research in ASAL Development (CETRAD).</p><p>Precipitation is strongly underestimated when adopting a typical parameterization setup for the mid-latitudes. However, results indicate that precipitation amounts and also patterns are substantially improved when changing the cumulus and PBL parameterisations. This strong increase in the simulated precipitation is obtained when using the Grell-Freitas ensemble, RRTM and the Yonsei University schemes for cumulus, long-wave radiation and planetary boundary layer, respectively. During some summer months, the accumulated precipitation is improved by up to 100 mm (80 %) compared to mid-latitudes configuration in several regions of the domains (near the Andes in Peru and over the flatlands in Kenya). Additionally, because the 1- and 2-way nesting options show a similar performance with respect to precipitation, the 1-way nesting option is preferred, as it does not overwrite the solutions in the parent domains. Hence, discontinuous solutions related to switching off the cumulus parameterization can be avoided.</p>


2019 ◽  
Vol 12 (5) ◽  
pp. 2595-2610 ◽  
Author(s):  
Konstantina Nakoudi ◽  
Elina Giannakaki ◽  
Aggeliki Dandou ◽  
Maria Tombrou ◽  
Mika Komppula

Abstract. In this work, the height of the planetary boundary layer (PBLH) is investigated over Gwal Pahari (Gual Pahari), New Delhi, for almost a year. To this end, ground-based measurements from a multiwavelength Raman lidar were used. The modified wavelet covariance transform (WCT) method was utilized for PBLH retrievals. Results were compared to data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the Weather Research and Forecasting (WRF) model. In order to examine the difficulties of PBLH detection from lidar, we analyzed three cases of PBLH diurnal evolution under different meteorological and aerosol load conditions. In the presence of multiple aerosol layers, the employed algorithm exhibited high efficiency (r=0.9) in the attribution of PBLH, whereas weak aerosol gradients induced high variability in the PBLH. A sensitivity analysis corroborated the stability of the utilized methodology. The comparison with CALIPSO observations yielded satisfying results (r=0.8), with CALIPSO slightly overestimating the PBLH. Due to the relatively warmer and drier winter and, correspondingly, colder and rainier pre-monsoon season, the seasonal PBLH cycle during the measurement period was slightly weaker than the cycle expected from long-term climate records.


2016 ◽  
Vol 16 (15) ◽  
pp. 9951-9963 ◽  
Author(s):  
Wanchun Zhang ◽  
Jianping Guo ◽  
Yucong Miao ◽  
Huan Liu ◽  
Yong Zhang ◽  
...  

Abstract. Accurate estimation of planetary boundary layer height (PBLH) is key to air quality prediction, weather forecast, and assessment of regional climate change. The PBLH retrieval from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is expected to complement ground-based measurements due to the broad spatial coverage of satellites. In this study, CALIOP PBLHs are derived from combination of Haar wavelet and maximum variance techniques, and are further validated against PBLHs estimated from ground-based lidar at Beijing and Jinhua. Correlation coefficients between PBLHs from ground- and satellite-based lidars are 0.59 at Beijing and 0.65 at Jinhua. Also, the PBLH climatology from CALIOP and radiosonde are compiled over China during the period from 2011 to 2014. Maximum CALIOP-derived PBLH can be seen in summer as compared to lower values in other seasons. Three matchup scenarios are proposed according to the position of each radiosonde site relative to its closest CALIPSO ground tracks. For each scenario, intercomparisons were performed between CALIOP- and radiosonde-derived PBLHs, and scenario 2 is found to be better than other scenarios using difference as the criteria. In early summer afternoon over 70 % of the total radiosonde sites have PBLH values ranging from 1.6 to 2.0 km. Overall, CALIOP-derived PBLHs are well consistent with radiosonde-derived PBLHs. To our knowledge, this study is the first intercomparison of PBLH on a large scale using the radiosonde network of China, shedding important light on the data quality of initial CALIOP-derived PBLH results.


2021 ◽  
Vol 13 (8) ◽  
pp. 1496
Author(s):  
Man-Hae Kim ◽  
Huidong Yeo ◽  
Soojin Park ◽  
Do-Hyeon Park ◽  
Ali Omar ◽  
...  

Coincident profiles from the space-borne and ground-based lidar measurements provide a unique opportunity to estimate the planetary boundary layer height (PBLH). In this study, PBLHs derived from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were assessed by comparing them with those obtained from the ground-based lidar at Seoul National University (SNU) in Korea for both day and night from 2006 to 2019, and sounding data. CALIOP-derived PBLHs using wavelet covariance transform (WCT) are generally higher than those derived from the SNU lidar for both day and night. The difference in PBLH tends to increase as the signal-to-noise ratio for CALIOP decreases. The difference also increases as aerosol optical depth increases, implying that the PBLH estimated from CALIOP could be higher than that determined from the SNU lidar because of the signal attenuation within the aerosol layer under optically thick aerosol layer conditions. The higher PBLH for CALIOP in this study is mainly attributed to multiple aerosol layers. After eliminating multilayer cases, the PBLHs estimated from both the lidars showed significantly improved agreement: a mean difference of 0.09 km (R = 0.81) for daytime and 0.25 km (R = 0.51) for nighttime. The results from this study suggest that PBL detection using CALIOP is reliable for daytime if multilayer cases are removed. For nighttime, PBLHs derived from the SNU lidar and CALIOP showed a relatively large difference in frequency distribution compared with sounding data. It suggests that further investigations are needed for nighttime PBLHs, such as investigations about discriminating the residual layer and the difference between lidar-derived PBLH based on the aerosol layer and thermally derived PBLH from radiosonde data for the stable boundary layer during the nighttime.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 737
Author(s):  
Cory M. Payne ◽  
Jeffrey E. Passner ◽  
Robert E. Dumais ◽  
Abdessattar Abdelkefi ◽  
Christopher M. Hocut

To investigate synoptic interactions with the San Andres Mountains in southern New Mexico, the Weather Research and Forecasting (WRF) model was used to simulate several days in the period 2018–2020. The study domain was centered on the U.S. Department of Agriculture (USDA) Agricultural Research Service’s Jornada Experimental Range (JER) and the emphasis was on synoptic conditions that favor strong to moderate winds aloft from the southwest, boundary layer shear, a lack of moisture (cloud coverage), and modest warming of the surface. The WRF simulations on these synoptic days revealed two distinct regimes: lee waves aloft and SW-to-NE oriented Longitudinal Roll Structures (LRS) that have typical length scales of the width of the mountain basin in the horizontal and the height of the boundary layer (BL) in the vertical. Analysis of the transitional periods indicate that the shift from the lee wave to LRS regime occurs when the surface heating and upwind flow characteristics reach a critical threshold. The existence of LRS is confirmed by satellite observations and the longitudinal streak patterns in the soil of the JER that indicate this is a climatologically present BL phenomenon.


2016 ◽  
Vol 55 (3) ◽  
pp. 791-809 ◽  
Author(s):  
Temple R. Lee ◽  
Stephan F. J. De Wekker

AbstractThe planetary boundary layer (PBL) height is an essential parameter required for many applications, including weather forecasting and dispersion modeling for air quality. Estimates of PBL height are not easily available and often come from twice-daily rawinsonde observations at airports, typically at 0000 and 1200 UTC. Questions often arise regarding the applicability of PBL heights retrieved from these twice-daily observations to surrounding locations. Obtaining this information requires knowledge of the spatial variability of PBL heights. This knowledge is particularly limited in regions with mountainous terrain. The goal of this study is to develop a method for estimating daytime PBL heights in the Page Valley, located in the Blue Ridge Mountains of Virginia. The approach includes using 1) rawinsonde observations from the nearest sounding station [Dulles Airport (IAD)], which is located 90 km northeast of the Page Valley, 2) North American Regional Reanalysis (NARR) output, and 3) simulations with the Weather Research and Forecasting (WRF) Model. When selecting days on which PBL heights from NARR compare well to PBL heights determined from the IAD soundings, it is found that PBL heights are higher (on the order of 200–400 m) over the Page Valley than at IAD and that these differences are typically larger in summer than in winter. WRF simulations indicate that larger sensible heat fluxes and terrain-following characteristics of PBL height both contribute to PBL heights being higher over the Page Valley than at IAD.


Sign in / Sign up

Export Citation Format

Share Document