scholarly journals Estimating Daytime Planetary Boundary Layer Heights over a Valley from Rawinsonde Observations at a Nearby Airport: An Application to the Page Valley in Virginia, United States

2016 ◽  
Vol 55 (3) ◽  
pp. 791-809 ◽  
Author(s):  
Temple R. Lee ◽  
Stephan F. J. De Wekker

AbstractThe planetary boundary layer (PBL) height is an essential parameter required for many applications, including weather forecasting and dispersion modeling for air quality. Estimates of PBL height are not easily available and often come from twice-daily rawinsonde observations at airports, typically at 0000 and 1200 UTC. Questions often arise regarding the applicability of PBL heights retrieved from these twice-daily observations to surrounding locations. Obtaining this information requires knowledge of the spatial variability of PBL heights. This knowledge is particularly limited in regions with mountainous terrain. The goal of this study is to develop a method for estimating daytime PBL heights in the Page Valley, located in the Blue Ridge Mountains of Virginia. The approach includes using 1) rawinsonde observations from the nearest sounding station [Dulles Airport (IAD)], which is located 90 km northeast of the Page Valley, 2) North American Regional Reanalysis (NARR) output, and 3) simulations with the Weather Research and Forecasting (WRF) Model. When selecting days on which PBL heights from NARR compare well to PBL heights determined from the IAD soundings, it is found that PBL heights are higher (on the order of 200–400 m) over the Page Valley than at IAD and that these differences are typically larger in summer than in winter. WRF simulations indicate that larger sensible heat fluxes and terrain-following characteristics of PBL height both contribute to PBL heights being higher over the Page Valley than at IAD.

2012 ◽  
Vol 140 (2) ◽  
pp. 664-682 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Song-You Hong ◽  
Jimy Dudhia

The lowest model level height z1 is important in atmospheric numerical models, since surface layer similarity is applied to the height in most of the models. This indicates an implicit assumption that z1 is within the surface layer. In this study, impacts of z1 on the performance of planetary boundary layer (PBL) parameterizations are investigated. Three conceptually different schemes in the Weather Research and Forecasting (WRF) model are tested for one complete diurnal cycle: the nonlocal, first-order Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2) schemes and the local, 1.5-order Mellor–Yamada–Janjić (MYJ) scheme. Surface variables are sensitive to z1 in daytime when z1 is below 12 m, even though the height is within the surface layer. Meanwhile during nighttime, the variables are systematically altered as z1 becomes shallower from 40 m. PBL structures show the sensitivity in the similar manner, but weaker. The order of sensitivity among the three schemes is YSU, ACM2, and MYJ. The significant sensitivity of the YSU parameterization comes from the PBL height calculation. This is considerably alleviated by excluding the thermal excess term in determining the PBL height when z1 is within the surface layer. The factor that specifies the ratio of nonlocal transport to total mixing is critical to the sensitivity of the ACM2 scheme. The MYJ scheme has no systematic sensitivity, since it is a local scheme. It is also noted that a numerical instability appears accompanying the unrealistic PBL structures when the grid spacing in the surface layer suddenly jumps.


2021 ◽  
Author(s):  
Yasmin Kaore Lago Kitagawa ◽  
Erick Giovani Sperandio Nascimento ◽  
Noéle Bissoli Perini Souza ◽  
Pedro Junior Zucatelli ◽  
Prashant Kumar ◽  
...  

This study simulates an unusual extreme rainfall event that occurred in Salvador City, Bahia, Brazil, on December 9, 2017, which was the subtropical storm Guará and had precipitation of approximately 24 mm within less than 1 h. Numerical simulations were conducted using the weather research and forecasting (WRF) model over three domains with horizontal resolutions of 9, 3, and 1 km. Different combinations of seven microphysics, three cumulus, and three planetary boundary layer schemes were evaluated based on their ability to simulate the hourly precipitation during this rainfall event. The results were compared with the data measured at the Brazilian National Institute of Meteorology (INMET) meteorological stations. The best configuration for the planetary boundary layer, cumulus, and microphysics schemes were Mellor-Yamada-Janjić, Grell-Devenyi, and Lin, respectively. The WRF model could depict the daily variations on the hourly parameters well, along with the spatial and temporal evolution of the extreme event.


2019 ◽  
Vol 12 (5) ◽  
pp. 2595-2610 ◽  
Author(s):  
Konstantina Nakoudi ◽  
Elina Giannakaki ◽  
Aggeliki Dandou ◽  
Maria Tombrou ◽  
Mika Komppula

Abstract. In this work, the height of the planetary boundary layer (PBLH) is investigated over Gwal Pahari (Gual Pahari), New Delhi, for almost a year. To this end, ground-based measurements from a multiwavelength Raman lidar were used. The modified wavelet covariance transform (WCT) method was utilized for PBLH retrievals. Results were compared to data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the Weather Research and Forecasting (WRF) model. In order to examine the difficulties of PBLH detection from lidar, we analyzed three cases of PBLH diurnal evolution under different meteorological and aerosol load conditions. In the presence of multiple aerosol layers, the employed algorithm exhibited high efficiency (r=0.9) in the attribution of PBLH, whereas weak aerosol gradients induced high variability in the PBLH. A sensitivity analysis corroborated the stability of the utilized methodology. The comparison with CALIPSO observations yielded satisfying results (r=0.8), with CALIPSO slightly overestimating the PBLH. Due to the relatively warmer and drier winter and, correspondingly, colder and rainier pre-monsoon season, the seasonal PBLH cycle during the measurement period was slightly weaker than the cycle expected from long-term climate records.


2012 ◽  
Vol 140 (3) ◽  
pp. 898-918 ◽  
Author(s):  
Pedro A. Jiménez ◽  
Jimy Dudhia ◽  
J. Fidel González-Rouco ◽  
Jorge Navarro ◽  
Juan P. Montávez ◽  
...  

Abstract This study summarizes the revision performed on the surface layer formulation of the Weather Research and Forecasting (WRF) model. A first set of modifications are introduced to provide more suitable similarity functions to simulate the surface layer evolution under strong stable/unstable conditions. A second set of changes are incorporated to reduce or suppress the limits that are imposed on certain variables in order to avoid undesired effects (e.g., a lower limit in u*). The changes introduced lead to a more consistent surface layer formulation that covers the full range of atmospheric stabilities. The turbulent fluxes are more (less) efficient during the day (night) in the revised scheme and produce a sharper afternoon transition that shows the largest impacts in the planetary boundary layer meteorological variables. The most important impacts in the near-surface diagnostic variables are analyzed and compared with observations from a mesoscale network.


Author(s):  
Alessio Golzio ◽  
Silvia Ferrarese ◽  
Claudio Cassardo ◽  
Gugliemina Adele Diolaiuti ◽  
Manuela Pelfini

AbstractWeather forecasts over mountainous terrain are challenging due to the complex topography that is necessarily smoothed by actual local-area models. As complex mountainous territories represent 20% of the Earth’s surface, accurate forecasts and the numerical resolution of the interaction between the surface and the atmospheric boundary layer are crucial. We present an assessment of the Weather Research and Forecasting model with two different grid spacings (1 km and 0.5 km), using two topography datasets (NASA Shuttle Radar Topography Mission and Global Multi-resolution Terrain Elevation Data 2010, digital elevation models) and four land-cover-description datasets (Corine Land Cover, U.S. Geological Survey land-use, MODIS30 and MODIS15, Moderate Resolution Imaging Spectroradiometer land-use). We investigate the Ortles Cevadale region in the Rhaetian Alps (central Italian Alps), focusing on the upper Forni Glacier proglacial area, where a micrometeorological station operated from 28 August to 11 September 2017. The simulation outputs are compared with observations at this micrometeorological station and four other weather stations distributed around the Forni Glacier with respect to the latent heat, sensible heat and ground heat fluxes, mixing-layer height, soil moisture, 2-m air temperature, and 10-m wind speed. The different model runs make it possible to isolate the contributions of land use, topography, grid spacing, and boundary-layer parametrizations. Among the considered factors, land use proves to have the most significant impact on results.


Author(s):  
Timothy W. Juliano ◽  
Branko Kosović ◽  
Pedro A. Jiménez ◽  
Masih Eghdami ◽  
Sue Ellen Haupt ◽  
...  

AbstractGenerating accurate weather forecasts of planetary boundary layer (PBL) properties is challenging in many geographical regions, oftentimes due to complex topography or horizontal variability in, for example, land characteristics. While recent advances in high-performance computing platforms have led to an increase in the spatial resolution of numerical weather prediction (NWP) models, the horizontal grid cell spacing (Δ x) of many regional-scale NWP models currently fall within or are beginning to approach the gray zone (i.e., Δ x ≈ 100 – 1000 m). At these grid cell spacings, three-dimensional (3D) effects are important, as the most energetic turbulent eddies are neither fully parameterized (as in traditional mesoscale simulations) nor fully resolved [as in traditional large eddy simulations (LES)]. In light of this modeling challenge, we have implemented a 3D PBL parameterization for high-resolution mesoscale simulations using the Weather Research and Forecasting model. The PBL scheme, which is based on the algebraic model developed by Mellor and Yamada, accounts for the 3D effects of turbulence by calculating explicitly the momentum, heat, and moisture flux divergences in addition to the turbulent kinetic energy. In this study, we present results from idealized simulations in the gray zone that illustrate the benefit of using a fully consistent turbulence closure framework under convective conditions. While the 3D PBL scheme reproduces the evolution of convective features more appropriately than the traditional 1D PBL scheme, we highlight the need to improve the turbulent length scale formulation.


2015 ◽  
Vol 15 (11) ◽  
pp. 16111-16139 ◽  
Author(s):  
L. Wu ◽  
H. Su ◽  
R. G. Fovell ◽  
T. J. Dunkerton ◽  
Z. Wang ◽  
...  

Abstract. The impacts of environmental moisture on the intensification of a tropical cyclone (TC) are investigated in the Weather Research and Forecasting (WRF) model, with a focus on the azimuthal asymmetry of the moisture impacts. A series of sensitivity experiments with varying moisture perturbations in the environment are conducted and the Marsupial Paradigm framework is employed to understand the different moisture impacts. We find that modification of environmental moisture has insignificant impacts on the storm in this case unless it leads to convective activity in the environment, which deforms the quasi-Lagrangian boundary of the storm. By facilitating convection and precipitation outside the storm, enhanced environmental moisture ahead of the northwestward-moving storm induces a dry air intrusion to the inner core and limits TC intensification. However, increased moisture in the rear quadrants favors intensification by providing more moisture to the inner core and promoting storm symmetry, with primary contributions coming from moisture increase in the boundary layer. The different impacts of environmental moisture on TC intensification are governed by the relative locations of moisture perturbations and their interactions with the storm Lagrangian structure.


2021 ◽  
Author(s):  
Yen-Sen Lu ◽  
Philipp Franke ◽  
Dorit Jerger

<p>ESIAS is an atmospheric modeling system including the ensemble version of the Weather Forecasting and Research Model (WRF V3.7.1) and the ensemble version of the EURopean Air pollution Dispersion-Inverse Model (EURAD-IM), the latter uses the output of the WRF model to calculate, amongst others, the transportation of aerosols. <!-- Maybe you can make more clear that only the wrf ensemble is used in this presentation. -->To capture extreme weather events causing the uncertainty in the solar radiation and wind speed for the renewable energy industry, we employ ESIAS by using stochastic schemes, such as Stochastically Perturbed Parameterization Tendency (SPPT) and Stochastic Kinetic Energy Backscatter (SKEBS) schemes, to generate the random fields for ensembles of up to 4096 members.</p><p>     Our first goal is to produce 48 hourly weather predictions for the European domain with a 20 KM horizontal resolution to capture extreme weather events affecting wind, solar radiation, and cloud cover forecasts. We use the ensemble capability of ESIAS to optimize the physics configuration of WRF to have a more precise weather prediction. A total of 672 ensemble members are generated to study the effect of different microphysical schemes, cumulus schemes, and planetary boundary layer parameterization schemes. We examine our simulation outputs with 288 simulation hours in 2015 using model input from the Global Ensemble Forecast System (GEFS). Our results are validated by the cloud cover data from EUMETSAT CMSAF. Besides the precision of weather forecasting, we also determine the greatest spread by generating total 768 ensemble members: 16 stochastic members for each different configurations of physical parameterizations (48 combinations). The optimization of WRF will help for improving the air quality prediction<!-- 16 member out of 48 configurations? Is this a mistake? Otherwise maybe you can be a bit more precise --><!-- I agree with Philipp, this is most unclear. --><!-- Reply to Jerger, Dorit (01/07/2021, 17:15): "..." Well I tried my best for it. The “blue” and the “cross-out red” ones are the two versions, hopefully the “blue” one is better than the “cross-out red” one. --> by EURAD-IM, which will be demonstrated on a test case basis.</p><p>     Our results show that for the performed analysis the Community Atmosphere Model (CAM) 5.1, WRF Single-Moment 6-class scheme (WSM6), and the Goddard microphysics outstand the other 11 microphysics parameterizations, where the highest daily average matching rate is 64.2%. The Mellor–Yamada Nakanishi Niino (MYNN) 2 and MYNN3 schemes give better results compared to the other 8 planetary boundary layer schemes, and Grell 3D (Grell-3) works generally well with the above mentioned physical schemes. Overall, the combination of Goddard and MYNN3 produces the greatest spread comparing to the lowest spread (Morrison 2-moment & GFS) by 40%.</p>


Sign in / Sign up

Export Citation Format

Share Document