scholarly journals Identifying Changes in Source Regions Impacting Speciated Atmospheric Mercury at a Rural Site in the Eastern United States

2017 ◽  
Vol 74 (9) ◽  
pp. 2937-2947 ◽  
Author(s):  
Irene Cheng ◽  
Leiming Zhang ◽  
Mark Castro ◽  
Huiting Mao

Abstract To investigate the effectiveness of emission reductions on the concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM) at a rural site in Maryland (MD08), long-term (2005–14) measurements of speciated atmospheric mercury were analyzed using concentration-weighted trajectory (CWT) analysis. CWT results suggested that the number of major source regions contributing to GEM, GOM, and reactive mercury (RM = GOM + PBM) over the eastern United States and southeastern Canada declined over time. Across much of these regions, source contributions in 2011–14 decreased by up to 20% for GEM, by greater than 60% for GOM, and by 20%–60% for PBM compared to 2006–08, largely because of the decreases in power-plant mercury emissions since 2009. Changes in the spatial distribution of the source regions were also observed over time. Increases in source contributions of GEM after 2011 over the northeastern United States and southeastern Canada were predominantly from emission increases in metal and steel production and forest fires. Source contribution increases in PBM were more widespread, which can be attributed potentially to mercury transformation processes in the air or wood combustion rather than industrial sources.

2009 ◽  
Vol 9 (1) ◽  
pp. 207-220 ◽  
Author(s):  
A. P. Rutter ◽  
D. C. Snyder ◽  
E. A. Stone ◽  
J. J. Schauer ◽  
R. Gonzalez-Abraham ◽  
...  

Abstract. In order to expand the currently limited understanding of atmospheric mercury source-receptor relationships in the Mexico City Metropolitan Area, real time measurements of atmospheric mercury were made at a downtown urban site, and a rural site on the outskirts of Mexico City, during March 2006. Numerous short-lived increases in particulate mercury (PHg) and reactive gaseous mercury (RGM) concentrations were observed at the urban site during the 17 day study, and less frequent increases in gaseous elemental mercury (GEM) concentrations were measured at both the urban and rural sites. The episodic increases observed were attributed to plume impacts from industrial point source emissions in and around Mexico City. Average concentrations and standard deviations measured during the study were as follows: i) urban site; PHg=187±300 pg m−3, RGM=62±64 pg m−3, GEM=7.2±4.8 ng m−3, and; ii) rural site; GEM=5.0±2.8 ng m−3. Several source regions of atmospheric mercury to the urban and rural sites were determined using Concentration Field Analysis, in which atmospheric mercury measurements were combined with back trajectory data to determine source regions. Only some source regions correlated to mercury emission sources listed in the Federal Pollutant Release and Transfer Register, leaving the rest unaccounted for. Contributions of anthropogenic mercury point sources in and around Mexico City to concentration averages measured at the urban site during the study were estimated to be: 93±3% of reactive mercury (PHg and RGM), and; 81±0.4% of GEM. Point source contributions to GEM measured at the rural site were 72±1%. GEM and reactive mercury (PHg+RGM) were not found to correlate with biomass burning at either of the measurement sites.


2013 ◽  
Vol 13 (20) ◽  
pp. 10505-10516 ◽  
Author(s):  
L. Zhang ◽  
S. X. Wang ◽  
L. Wang ◽  
J. M. Hao

Abstract. Continuous measurements of atmospheric mercury concentration and speciation play a key role in identifying mercury sources and its behavior in the atmosphere. In this study, speciated atmospheric mercury including gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle-bound mercury (PBM) were continuously measured at Miyun, a rural site in Beijing, China, from December 2008 to November 2009. The average GEM, RGM and PBM concentrations were found to be 3.22 ± 1.74, 10.1 ± 18.8 and 98.2 ± 112.7 pg m−3, respectively, about 2–20 times higher than the background concentration of the Northern Hemisphere. The results indicated that atmospheric mercury concentrations in northern China were highly affected by anthropogenic emissions. The atmospheric mercury showed obvious seasonal variations, with the highest seasonal average GEM concentration in summer (3.48 ng m−3) and the lowest value in winter (2.66 ng m−3). In autumn and winter a diurnal variation of GEM was observed, with peak levels in the late afternoon till midnight. Most of the high RGM concentration values occurred in the afternoon of all seasons due to the higher oxidation. The PBM concentration was higher in early morning of all seasons because of the the temperature inversion that increases in depth as the night proceeds. The ratio of GEM to CO indicates that residential boilers play an important role in the elevation of GEM in winter. The ratio of RGM to O3 could be an indicator of the contribution of local primary sources. The ratio of PBM to PM2.5 reveals that the air mass from the east and southwest of the site in spring and summer carries more atmospheric mercury. The HYSPLIT back-trajectory analysis indicated that the monitoring site is affected by local, regional and interregional sources simultaneously during heavy pollution episodes. The results from the potential source contribution function (PSCF) model indicate that the atmospheric transport predominantly from the northwest contributes to the elevated atmospheric mercury in winter and autumn, while the North China Plain (NCP) region and the northern part of the Yangtze River Delta (YRD) region are the major source areas for mercury pollution in spring and summer.


2011 ◽  
Vol 11 (22) ◽  
pp. 11521-11533 ◽  
Author(s):  
G. Luo ◽  
F. Yu

Abstract. Aerosol nucleation events, widely observed at various locations around the globe, are a significant source of cloud condensation nuclei (CCN) which determines aerosol indirect radiative forcing. In this study, a size-resolved, computationally efficient, advanced particle microphysics (APM) model, which has been previously incorporated into a global chemistry transport model (GEOS-Chem), is integrated into the Weather Research and Forecast model coupled with Chemistry (WRF-Chem) to study new particle formation and its contribution to particle number concentration and CCN abundance over the Eastern United States. Size- and composition-resolved aerosol properties from GEOS-Chem + APM simulations are used to initialize and provide boundary conditions for the WRF-Chem + APM model. The modeling results have been evaluated with the relevant measurements obtained during the INTEX-A field campaign in the summer of 2004. Model simulation captures the high concentrations of SO2 and CN10 at surface layer and source regions but underpredicts the values in the upper troposphere. The particle formation and number concentrations simulated by WRF-Chem + APM are generally consistent with those based on GEOS-Chem + APM over the Eastern United States, but the WRF-Chem + APM simulation has a much higher spatial resolution and can reveal urban and even plume scale processes. Our simulations show that high values of nucleation rates are largely confined to the regions of high SO2 emissions and that aerosol nucleation dominates the spatial and temporal distributions of condensation nuclei lager than 10 nm (CN10). Similarly, high concentrations of CCN at supersaturation of 0.4% (CCN0.4) are generally confined to SO2 source regions, with the highest monthly (July) mean CCN0.4 value exceeding 1600 # cm−3 in the lower troposphere over Indiana and Ohio. Nucleation and subsequent growth of secondary particles are important sources of CCN0.4, accounting for more than 80% in most parts of the Eastern United States.


1982 ◽  
Vol 18 (1-3) ◽  
pp. 65-81 ◽  
Author(s):  
George T. Wolff ◽  
Nelson A. Kelly ◽  
Martin A. Ferman

2019 ◽  
Vol 19 (9) ◽  
pp. 5923-5940 ◽  
Author(s):  
Xiaofei Qin ◽  
Xiaohao Wang ◽  
Yijie Shi ◽  
Guangyuan Yu ◽  
Na Zhao ◽  
...  

Abstract. Speciated atmospheric mercury including gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM) were measured continuously for a 1-year period at a suburban site, representing a regional transport intersection zone, in east China. Annual mean concentrations of GEM, PBM, and GOM reached 2.77 ng m−3, 60.8 pg m−3, and 82.1 pg m−3, respectively. GEM concentrations were elevated in all the seasons except autumn. High mercury concentrations were related to winds from the south, southwest, and north of the measurement site. Combining analysis results from using various source apportionment methods, it was found that GEM concentration was higher when quasi-local sources dominated over long-range transport. Six source factors belonging to the anthropogenic sources of GEM were identified, including the common sectors previously identified (industrial and biomass burning, coal combustion, iron and steel production, cement production, and incineration), as well as an additional factor of shipping emissions (accounting for 19.5 % of the total), which was found to be important in east China where marine vessel shipping activities are intense. Emissions of GEM from natural surfaces were also found to be as important as those from anthropogenic sources for GEM observed at this site. Concurrences of high GOM concentrations with elevated O3 and temperature, along with the lagged variations in GEM and GOM during daytime demonstrated that the very high GOM concentrations were partially ascribed to intense in situ oxidation of GEM. Strong gas–particle partitioning was also identified when PM2.5 was above a threshold value, in which case GOM decreased with increasing PM2.5.


Sign in / Sign up

Export Citation Format

Share Document