Constraining ice water content of thin Antarctic cirrus clouds using ground-based lidar and satellite data

Author(s):  
S. P. Alexander ◽  
A. R. Klekociuk

AbstractWe combine observations of optically-thin cirrus clouds made by lidar at Davis, Antarctica (69°S, 78°E) during 14 – 15 June 2011 with a microphysical retrieval algorithm to constrain the ice water content (IWC) of these clouds. The cirrus were embedded in a tropopause jet which flowed around a ridge of high pressure extending southwards over Davis from the Southern Ocean. Cloud optical depths were (0.082±0.001) and sub-visual cirrus were present during 11% of the observation period. The macrophysical cirrus cloud properties obtained during this case study are consistent with those previously reported at lower latitudes. MODIS satellite imagery and AIRS surface temperature data are used as inputs into a radiative transfer model in order to constrain the IWC and ice water path of the cirrus. The derived cloud IWC is consistent with in-situ observations made at other locations but at similarly cold temperatures. The optical depths derived from the model agree with those calculated directly from the lidar data. This study demonstrates the value of a combination of ground-based lidar observations and a radiative transfer model in constraining microphysical cloud parameters which could be utilised at locations where other lidar measurements are made.

2020 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Lucie Leonarski ◽  
Laurent C.-Labonnote ◽  
Mathieu Compiègne ◽  
Jérôme Vidot ◽  
Anthony J. Baran ◽  
...  

The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (IWP) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose IWP is between about 1 and 300 g/m2).


2011 ◽  
Vol 11 (7) ◽  
pp. 19927-19952
Author(s):  
R. Rodríguez De León ◽  
M. Krämer ◽  
D. S. Lee ◽  
J. C. Thelen

Abstract. The dependence of the radiative properties of persistent linear contrails on the variability of their ice water path is assessed in a two-stream radiative transfer model. It is assumed that the ice water content and the effective size of ice crystals in aged contrails do not differ from those observed in natural cirrus; the parameterization of these two variables, based on in situ observations, allows a more realistic representation than the common assumption of fixed values for the contrail optical depth and ice crystal effective radius. The results show that the large variability in ice water content that aged contrails may share with natural cirrus, together with an assumed contrail vertical thickness between 220 and 1000 m, translate into a wider range of radiative forcings from linear contrails (0.3 to 51.6 mW m−2) than that reported in previous studies, including IPCC's (3 to 30 mW m−2). The derivation of a best estimate within this range is complicated by the fact that the ice water contents measured in situ imply mean optical depths between 0.08 and 0.32, coinciding with the range commonly assumed in contrail studies, while optical depths derived from satellite ice water content retrievals are significantly larger (0.51–2.02). Further field and modelling studies of the temporal evolution of contrail properties will thus be needed to reduce the uncertainties associated with the values assumed in large scale contrail studies.


2012 ◽  
Vol 12 (17) ◽  
pp. 7893-7901 ◽  
Author(s):  
R. R. De León ◽  
M. Krämer ◽  
D. S. Lee ◽  
J. C. Thelen

Abstract. The dependence of the radiative properties of persistent linear contrails on the variability of their ice water path is assessed in a two-stream radiative transfer model. It is assumed that the ice water content and the effective size of ice crystals in aged contrails do not differ from those observed in natural cirrus; the parameterization of these two variables, based on a correlation with ambient temperature derived from in situ observations, allows a more realistic representation than the common assumption of fixed values for the contrail optical depth and ice crystal effective radius. The results show that the large variability in ice water content that aged contrails may share with natural cirrus, together with an assumed contrail vertical thickness between 220 and 1000 m, translate into a wider range of radiative forcings from linear contrails [1 to 66 m Wm−2] than that reported in previous studies, including IPCC's [3 to 30 m Wm−2]. Further field and modelling studies of the temporal evolution of contrail properties will thus be needed to reduce the uncertainties associated with the values assumed in large scale contrail studies.


2011 ◽  
Vol 49 (6) ◽  
pp. 2819-2827 ◽  
Author(s):  
Qian Feng ◽  
N. Christina Hsu ◽  
Ping Yang ◽  
Si-Chee Tsay

The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles in computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.


2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2015 ◽  
Vol 15 (6) ◽  
pp. 3007-3020 ◽  
Author(s):  
R. Loughman ◽  
D. Flittner ◽  
E. Nyaku ◽  
P. K. Bhartia

Abstract. The Gauss–Seidel limb scattering (GSLS) radiative transfer (RT) model simulates the transfer of solar radiation through the atmosphere and is imbedded in the retrieval algorithm used to process data from the Ozone Mapping and Profiler Suite (OMPS) limb profiler (LP), which was launched on the Suomi NPP satellite in October 2011. A previous version of this model has been compared with several other limb scattering RT models in previous studies, including Siro, MCC++, CDIPI, LIMBTRAN, SASKTRAN, VECTOR, and McSCIA. To address deficiencies in the GSLS radiance calculations revealed in earlier comparisons, several recent changes have been added that improve the accuracy and flexibility of the GSLS model, including 1. improved treatment of the variation of the extinction coefficient with altitude, both within atmospheric layers and above the nominal top of the atmosphere; 2. addition of multiple-scattering source function calculations at multiple solar zenith angles along the line of sight (LOS); 3. introduction of variable surface properties along the limb LOS, with minimal effort required to add variable atmospheric properties along the LOS as well; 4. addition of the ability to model multiple aerosol types within the model atmosphere. The model improvements 1 and 2 are verified by comparison to previously published results (using standard radiance tables whenever possible), demonstrating significant improvement in cases for which previous versions of the GSLS model performed poorly. The single-scattered radiance errors that were as high as 4% in earlier studies are now generally reduced to 0.3%, while total radiance errors generally decline from 10% to 1–3%. In all cases, the tangent height dependence of the GSLS radiance error is greatly reduced.


2019 ◽  
Vol 12 (3) ◽  
pp. 1545-1568
Author(s):  
Friederike Hemmer ◽  
Laurent C.-Labonnote ◽  
Frédéric Parol ◽  
Gérard Brogniez ◽  
Bahaiddin Damiri ◽  
...  

Abstract. The algorithm presented in this paper was developed to retrieve ice water content (IWC) profiles in cirrus clouds. It is based on optimal estimation theory and combines ground-based visible lidar and thermal infrared (TIR) radiometer measurements in a common retrieval framework in order to retrieve profiles of IWC together with a correction factor for the backscatter intensity of cirrus cloud particles. As a first step, we introduce a method to retrieve extinction and IWC profiles in cirrus clouds from the lidar measurements alone and demonstrate the shortcomings of this approach due to the backscatter-to-extinction ambiguity. As a second step, we show that TIR radiances constrain the backscattering of the ice crystals at the visible lidar wavelength by constraining the ice water path (IWP) and hence the IWC, which is linked to the optical properties of the ice crystals via a realistic bulk ice microphysical model. The scattering phase function obtained from the microphysical model is flat around the backscatter direction (i.e., there is no backscatter peak). We show that using this flat backscattering phase function to define the backscatter-to-extinction ratio of the ice crystals in the retrievals with the lidar-only algorithm results in an overestimation of the IWC, which is inconsistent with the TIR radiometer measurements. Hence, a synergy algorithm was developed that combines the attenuated backscatter profiles measured by the lidar and the measurements of TIR radiances in a common optimal estimation framework to retrieve the IWC profile together with a correction factor for the phase function of the bulk ice crystals in the backscattering direction. We show that this approach yields consistent lidar and TIR results. The resulting lidar ratios for cirrus clouds are found to be consistent with previous independent studies.


2018 ◽  
Author(s):  
Friederike Hemmer ◽  
Laurent C.-Labonnote ◽  
Frédéric Parol ◽  
Gérard Brogniez ◽  
Bahaiddin Damiri ◽  
...  

Abstract. The algorithm presented in this paper was developed to retrieve ice water content (IWC) profiles in cirrus clouds. It is based on optimal estimation theory and combines ground-based visible lidar and thermal infrared (TIR) radiometer measurements in a common retrieval framework to retrieve profiles of IWC together with a correction factor for the backscatter intensity of cirrus cloud particles. In a first step, we introduce a method to retrieve extinction and IWC profiles in cirrus clouds from the lidar measurements alone and demonstrate the shortcomings of this approach due to the backscatter-to-extinction ambiguity. In a second step, we show that TIR radiances constrain the backscattering of the ice crystals at the visible lidar wavelength by constraining the ice water path (IWP) and hence the IWC which is linked to the optical properties of the ice crystals via a realistic bulk ice microphysical model. The scattering phase function obtained from the microphysical model has a flat ending without backscattering peak. We show that retrievals with the lidar only algorithm using this phase function in backscattering direction to define the backscatter-to-extinction ratio of the ice crystals result in an overestimation of IWC which is inconsistent with the TIR radiometer measurements. Hence, a synergy algorithm was developed that combines the profiles of backscattering measured by the lidar and the measurements of TIR radiances in a common optimal estimation framework to retrieve together with the IWC profile a correction factor for the phase function of the bulk ice crystals in backscattering direction. We show that this approach allows to simultaneously converge towards the measurements of two independent instruments and that the first results of the retrieved lidar ratios for cirrus clouds agree with previous studies.


Sign in / Sign up

Export Citation Format

Share Document