scholarly journals Modulation of Western North Pacific Tropical Cyclone Activity by the ISO. Part II: Tracks and Landfalls

2013 ◽  
Vol 26 (9) ◽  
pp. 2919-2930 ◽  
Author(s):  
Richard C. Y. Li ◽  
Wen Zhou

Abstract This study investigates how tropical cyclone (TC) tracks and landfalls are modulated by the two major components of the intraseasonal oscillation (ISO), the 30–60-day Madden–Julian oscillation (MJO) and the 10–20-day quasi-biweekly oscillation (QBWO). In the convective phases of the MJO (phases 7 + 8 and 1 + 2), the western North Pacific Ocean (WNP) is mainly clustered with westward- and northwestward-moving TCs. The strong easterlies (southeasterlies) in the southern flank of the subtropical high lead to an increase in TC activity and landfalls in the Philippines and Vietnam (China and Japan) in phase 7 + 8 (phase 1 + 2). In the nonconvective phases (phases 3 + 4 and 5 + 6), TCs change from the original straight-moving type to the recurving type, such that the tendency for landfalls is significantly reduced. The QBWO, on the other hand, has a significant influence on TC landfalls in the Philippines and Japan. The strengthening of the subtropical high in phase 1 + 2 favors the development of westward-moving TCs and results in an increase in landfalls in the Philippines, while in phase 3 + 4 (phase 5 + 6), there is an increase (decrease) in TC activity and landfalls in Japan because of changes in genesis locations and large-scale circulations. The results herein suggest that both the MJO and QBWO exert distinctive impacts on TCs in the WNP.

2008 ◽  
Vol 136 (6) ◽  
pp. 2006-2022 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Jenny S. N. Hui ◽  
Russell L. Elsberry

Abstract The mesoscale features of 124 tropical cyclone formations in the western North Pacific Ocean during 1999–2004 are investigated through large-scale analyses, satellite infrared brightness temperature (TB), and Quick Scatterometer (QuikSCAT) oceanic wind data. Based on low-level wind flow and surge direction, the formation cases are classified into six synoptic patterns: easterly wave (EW), northeasterly flow (NE), coexistence of northeasterly and southwesterly flow (NE–SW), southwesterly flow (SW), monsoon confluence (MC), and monsoon shear (MS). Then the general convection characteristics and mesoscale convective system (MCS) activities associated with these formation cases are studied under this classification scheme. Convection processes in the EW cases are distinguished from the monsoon-related formations in that the convection is less deep and closer to the formation center. Five characteristic temporal evolutions of the deep convection are identified: (i) single convection event, (ii) two convection events, (iii) three convection events, (iv) gradual decrease in TB, and (v) fluctuating TB, or a slight increase in TB before formation. Although no dominant temporal evolution differentiates cases in the six synoptic patterns, evolutions ii and iii seem to be the common routes taken by the monsoon-related formations. The overall percentage of cases with MCS activity at multiple times is 63%, and in 35% of cases more than one MCS coexisted. Most of the MC and MS cases develop multiple MCSs that lead to several episodes of deep convection. These two patterns have the highest percentage of coexisting MCSs such that potential interaction between these systems may play a role in the formation process. The MCSs in the monsoon-related formations are distributed around the center, except in the NE–SW cases in which clustering of MCSs is found about 100–200 km east of the center during the 12 h before formation. On average only one MCS occurs during an EW formation, whereas the mean value is around two for the other monsoon-related patterns. Both the mean lifetime and time of first appearance of MCS in EW are much shorter than those developed in other synoptic patterns, which indicates that the overall formation evolution in the EW case is faster. Moreover, this MCS is most likely to be found within 100 km east of the center 12 h before formation. The implications of these results to internal mechanisms of tropical cyclone formation are discussed in light of other recent mesoscale studies.


2008 ◽  
Vol 21 (6) ◽  
pp. 1171-1191 ◽  
Author(s):  
Joo-Hong Kim ◽  
Chang-Hoi Ho ◽  
Hyeong-Seog Kim ◽  
Chung-Hsiung Sui ◽  
Seon Ki Park

Abstract The variability of observed tropical cyclone (TC) activity (i.e., genesis, track, and landfall) in the western North Pacific (WNP) is examined in relation to the various categories of the Madden–Julian oscillation (MJO) during summer (June–September) for the period 1979–2004. The MJO categories are defined based on the empirical orthogonal function analysis of outgoing longwave radiation data. The number of TCs increases when the MJO-related convection center is located in the WNP. The axis of a preferable genesis region systematically shifts like a seesaw in response to changes in the large-scale environments associated with both the eastward and northward propagation of the MJO and the intraseasonal variability of the WNP subtropical high. Furthermore, the authors show that the density of TC tracks in each MJO category depends on the systematic shift in the main genesis regions at first order. Also, the shift is affected by the prevailing large-scale steering flows in each MJO category. When the MJO-related convection center is found in the equatorial Indian Ocean (the tropical WNP), a dense area of tracks migrates eastward (westward). The effects of extreme ENSO events and the variations occurring during ENSO neutral years are also examined. A statistical analysis of TC landfalls by MJO category is applied in seven selected subareas: the Philippines, Vietnam, South China, Taiwan, East China, Korea, and Japan. While a robust and significant modulation in the number of TC landfalls is observed in south China, Korea, and Japan, the modulation is marginal in the remaining four subareas.


2011 ◽  
Vol 24 (24) ◽  
pp. 6339-6352 ◽  
Author(s):  
Ping Huang ◽  
Chia Chou ◽  
Ronghui Huang

Abstract The seasonal modulation of tropical intraseasonal oscillation (TISO) on tropical cyclone (TC) geneses over the western North Pacific Ocean (WNP) is investigated in three periods of the WNP TC season: May–June (MJ), July–September (JAS), and October–December (OND). The modulation of the TISO–TC geneses over the WNP is strong in MJ, while it appears weaker in JAS and OND. In MJ, TISO propagates northward via two routes, the west route through the South China Sea and the east route through the WNP monsoon trough region, which are two clustering locations of TC geneses. TISO can synchronously influence most TC geneses over these two regions. In JAS, however, the modulation is out of phase between the monsoon trough region and the East Asian summer monsoon region, as well as the WNP subtropical high region, as a result of further northward propagation of TISO and scattered TC geneses. The TISO–TC genesis modulation in each individual region is comparable to that in MJ, although the modulation over the entire WNP in JAS appears weaker. In OND, TISO has a stronger influence on TC geneses west than east of 150°E because TISO decays and its convection center located at the equator is out of the TC genesis region when propagating eastward into east of 150°E. Midlevel relative humidity is the primary contribution to the modulations of TISO on the genesis environment, while vorticity could contribute to the modulation over the subtropics in JAS.


2013 ◽  
Vol 52 (6) ◽  
pp. 1417-1432 ◽  
Author(s):  
Wei Zhang ◽  
Yee Leung ◽  
Johnny C. L. Chan

AbstractThis is the second paper of a two-part series of papers on the analysis of tropical cyclone (TC) tracks in the western North Pacific Ocean. In this paper, TC landfalls in the South China Sea and western North Pacific basins are investigated through the data-mining approach. On the basis of historical TC archives, the C4.5 algorithm, a classic tree algorithm for classification, has been employed to quantitatively discover rules governing TC landfall. A classification tree, with 14 leaf nodes, has been built. The path from the root node to each leaf node forms a rule. Fourteen rules governing TC landfall across the Chinese coast have been unraveled with respect to the selected attributes having potential influence on TC landfall. The rules are derived by the attributes and splitting values. From the classification tree, split values, such as 27°N latitude, 130°E longitude, 141°E in the west extension index, and 0.289 in the monsoon index have been shown to be useful for TC forecasting. The rules have been justified from the perspective of meteorology and knowledge of TC movement and recurvature (e.g., deep-layer mean winds and large-scale circulation). The research findings are also consistent with existing results concerning TC movement and landfall. Both the unraveled rules and the associated splitting values can provide useful references for the prediction of TC landfall over China.


2013 ◽  
Vol 52 (6) ◽  
pp. 1394-1416 ◽  
Author(s):  
Wei Zhang ◽  
Yee Leung ◽  
Johnny C. L. Chan

AbstractThis paper is the first of a two-part series of papers that employs the data-mining approach to analyze tropical cyclone (TC) movement in the western North Pacific Ocean. Part I unravels conditions under which TCs tend to recurve, and Part II uncovers conditions leading to TCs making landfall. Here in Part I, a detailed study is carried out into TC recurvature over the South China Sea and western North Pacific. The investigation focuses on the unraveling of rules governing TC recurvature hidden in TC data. The historical TC track database comprises recurving TCs and straight movers. Potential parameters affecting TC recurvature are categorized into three groups: large-scale circulation, circulations surrounding TCs, and variables characterizing TCs. The tree construction algorithm, C4.5, is applied to classify recurving and straight-moving TCs. Parameters measuring large-scale circulation patterns and characterizing TCs play significant roles in building the classification tree. Altogether, 18 rules are discovered from the processed database. Most of the 18 rules can be explained by existing theories and are supported by various empirical findings on TC recurvatures. Rules governing TC recurvature discovered by the present study contain quantitative descriptions of factors such as composite wind fields, geopotential heights, and deep-layer mean winds that are essential to the understanding, interpretation, and prediction of TC recurvatures.


2011 ◽  
Vol 50 (8) ◽  
pp. 1725-1739 ◽  
Author(s):  
Emmi Yonekura ◽  
Timothy M. Hall

AbstractA new statistical model for western North Pacific Ocean tropical cyclone genesis and tracks is developed and applied to estimate regionally resolved tropical cyclone landfall rates along the coasts of the Asian mainland, Japan, and the Philippines. The model is constructed on International Best Track Archive for Climate Stewardship (IBTrACS) 1945–2007 historical data for the western North Pacific. The model is evaluated in several ways, including comparing the stochastic spread in simulated landfall rates with historic landfall rates. Although certain biases have been detected, overall the model performs well on the diagnostic tests, for example, reproducing well the geographic distribution of landfall rates. Western North Pacific cyclogenesis is influenced by El Niño–Southern Oscillation (ENSO). This dependence is incorporated in the model’s genesis component to project the ENSO-genesis dependence onto landfall rates. There is a pronounced shift southeastward in cyclogenesis and a small but significant reduction in basinwide annual counts with increasing ENSO index value. On almost all regions of coast, landfall rates are significantly higher in a negative ENSO state (La Niña).


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2020 ◽  
Vol 54 (3-4) ◽  
pp. 2237-2248 ◽  
Author(s):  
Qiong Wu ◽  
Xiaochun Wang ◽  
Li Tao

AbstractIn this study, we analyzed the impacts of Western North Pacific Subtropical High (WNPSH) on tropical cyclone (TC) activity on both interannual and interdecadal timescales. Based on a clustering analysis method, we grouped TCs in the Western North Pacific into three clusters according to their track patterns. We mainly focus on Cluster 1 (C1) TCs in this work, which is characterized by forming north of 15° N and moving northward. On interannual timescale, the number of C1 TCs is influenced by the intensity variability of the WNPSH, which is represented by the first Empirical Orthogonal Function (EOF) of 850 hPa geopotential height of the region. The WNPSH itself is modulated by the El Niño–Southern Oscillation at its peak phase in the previous winter, as well as Indian and Atlantic Ocean sea surface temperature anomalies in following seasons. The second EOF mode shows the interdecadal change of WNPSH intensity. The interdecadal variability of WNPSH intensity related to the Pacific climate regime shift could cause anomalies of the steering flow, and lead to the longitudinal shift of C1 TC track. Negative phases of interdecadal Pacific oscillation are associated with easterly anomaly of steering flow, westward shift of C1 TC track, and large TC impact on the East Asia coastal area.


Sign in / Sign up

Export Citation Format

Share Document