The Extreme Drought Event during Winter–Spring of 2011 in East China: Combined Influences of Teleconnection in Midhigh Latitudes and Thermal Forcing in Maritime Continent Region

2013 ◽  
Vol 26 (20) ◽  
pp. 8210-8222 ◽  
Author(s):  
Dachao Jin ◽  
Zhaoyong Guan ◽  
Weiya Tang

Abstract The middle and lower reaches of the Yangtze River (MLRYR) in China experienced an extremely severe and persistent drought event from January to May of 2011. Using both the observational data and NCEP–NCAR reanalysis, features of the drought event and the related circulation anomalies were investigated. It is found that the precipitation during the investigated period of 2011 was deficient mostly along the Yangtze River. The water vapor diverged from MLRYR southward into the Bay of Bengal, South China Sea, and the Philippines. There were two factors facilitating the drought event. One was the quasi-stationary Rossby wave–related teleconnection, which propagated eastward at midhigh latitudes from the North Atlantic to East Asia, reinforcing the Siberian high and the East Asian trough, henceforth resulting in the divergence anomalies in MLRYR in the lower troposphere. This quasi-stationary wave train, though originating from the North Atlantic region, was not essentially related to the North Atlantic Oscillation. Another factor for the drought event was the persistent anomalous thermal forcing over the Maritime Continent, which induced the anomalous divergence in the upper troposphere in this region, building up an anomalous Hadley circulation with its ascent branch over the Maritime Continent and descent branch over MLRYR. This thermal forcing was possibly, but not necessarily, related to the La Niña event. The persistence of the drought event over MLRYR was due to the maintenance of the quasi-stationary waves at midhigh latitudes and the persistent anomalous thermal forcing in the Maritime Continent.

2017 ◽  
Vol 30 (17) ◽  
pp. 6629-6643 ◽  
Author(s):  
Dachao Jin ◽  
Zhaoyong Guan

Using the NCEP–NCAR reanalysis and other observational datasets, the authors have investigated the relationship of summer rainfall variations between the Hetao region of northern China and the middle and lower reaches of Yangtze River (MLRYR). The results have demonstrated that rainfall in Hetao varies out of phase with that in MLRYR on the interannual time scales. This phenomenon is referred to as the Hetao–Yangtze rainfall seesaw (HYRS). An HYRS index is defined to reveal both spatial and temporal features of HYRS. It is found that the North Atlantic Oscillation (NAO) affects the HYRS. In years when the NAO is in its positive phase, anomalous divergences in the lower troposphere and anomalous convergences in the upper troposphere are observed in regions of the Mediterranean and eastern Europe. The anomalous convergences in the upper troposphere occur as the positive Rossby wave source excites a circumglobal teleconnection (CGT) in the midlatitudes, exhibiting the eastward propagation of Rossby wave energy along the Asian jet. Meanwhile, the Eurasian–Pacific (EUP) teleconnection also affects the HYRS. Influenced mainly by the CGT pattern, the circulations over Hetao and MLRYR are consequently perturbed. The atmosphere over Hetao converges anomalously in the lower troposphere and diverges anomalously in the upper troposphere, facilitating more than normal rainfall there. At the same time, the atmosphere over MLRYR diverges anomalously in the lower troposphere and converges anomalously in the upper troposphere, resulting in more than normal summer rainfall in MLRYR. In this way, the north–south rainfall seesaw is formed. This NAO-induced rainfall seesaw is potentially useful for summer rainfall predictions in both MLRYR and the Hetao region of northern China.


2015 ◽  
Vol 28 (4) ◽  
pp. 1396-1416 ◽  
Author(s):  
Guillaume Gastineau ◽  
Claude Frankignoul

Abstract The ocean–atmosphere coupling in the North Atlantic is investigated during the twentieth century using maximum covariance analysis of sea surface temperature (SST) and 500-hPa geopotential height analyses and performing regressions on dynamical diagnostics such as Eady growth rate, wave activity flux, and velocity potential. The North Atlantic Oscillation (NAO) generates the so-called SST anomaly tripole. A rather similar SST anomaly tripole, with the subpolar anomaly displaced to the east and a more contracted subtropical anomaly, which is referred to as the North Atlantic horseshoe pattern, in turn influences the atmosphere. In the fall and early winter, the response is NAO like and primarily results from subpolar forcing centered over the Labrador Sea and off Newfoundland. In summer, the largest atmospheric response to SST resembles the east Atlantic pattern and results from a combination of subpolar and tropical forcing. To emphasize the interannual to multidecadal variability, the same analysis is repeated after low-pass filtering. The SST influence is dominated by the Atlantic multidecadal oscillation (AMO), which also has a horseshoe shape, but with larger amplitude in the subpolar basin. A warm AMO phase leads to an atmospheric warming limited to the lower troposphere in summer, while it leads to a negative phase of the NAO in winter. The winter influence of the AMO is suggested to be primarily forced by the Atlantic SSTs in the northern subtropics. Such influence of the AMO is found in winter instead of early winter because the winter SST anomalies have a larger persistence, presumably because of SST reemergence.


2021 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Patricia de Zea Bermudez ◽  
Iago Algarra ◽  
Luis Gimeno

Abstract The Great Plains Low-Level Jet system consists of very strong winds in the lower troposphere that transport a huge amount of moisture from the Gulf of Mexico to the American Great Plains. This paper aims to study the extremes of the Transported Moisture (TM) from the GPLLJ source region to the jet domain; and, for low and high TM, to analyze the extremal dependence between the upper tail of the precipitation in the GPLLJ sink region and the lower tail of the tropospheric stability in that region (omega). The declustered extremes of TM were analyzed using Peaks Over Threshold (POT). A non-stationary Exponential model was fitted to the cluster maxima. Estimated return levels show that the extremes of TM are expected to decrease in the future. This is meteorologically congruent with the known displacement of the western edge of the North Atlantic Subtropical High, which controls atmospheric circulation in the North Atlantic, and to a higher scale with the change of phase from negative to positive of the Atlantic Multidecadal Oscillation. Bilogistic and Logistic models were fitted to the extremes of (-omega, precipitation) for low and high TM, respectively. The extremal dependence between "-omega" and precipitation proves to be stronger in the case of high TM. This confirms that dynamical instability represented by “-omega” is the most important parameter for achieving high values of precipitation once there is a mechanism that allows the continuous supply of large amounts of moisture, such as the derived from a low-level jet system.


2015 ◽  
Vol 28 (15) ◽  
pp. 6204-6220 ◽  
Author(s):  
Michael Veres ◽  
Qi Hu

Abstract Idealized model experiments using the NCAR CESM1.0.5 under equinox conditions are designed and performed to address two fundamental questions about the effects of the sea surface temperature (SST) variation associated with the Atlantic multidecadal oscillation (AMO) on circulation and precipitation in North America and Europe: 1) Is the observed relationship between the AMO SST and the warm-season precipitation in North America a statistical coincidence? and 2) Why is the response of negative precipitation anomaly to warm SST in the AMO fairly uniform across most of North America, whereas the positive precipitation anomaly in the cold SST rather spotty? Model experiments are done with either a warm or cold SST anomaly in an aquaplanet, a planet with idealized continents, and a planet with both idealized continents and orography. Major results show that the atmospheric response to warm SST anomaly in the North Atlantic is fairly similar among the three sets of experiments. In the lower troposphere, the response has a significant negative geopotential anomaly from the SST anomaly center to the east and a positive geopotential anomaly in upstream North America. However, the response to the cold SST anomaly changes considerably among these experiments, particularly in North America. These results provide a foundation to answer the abovementioned two questions. First, they show that there is physical connection of the AMO SST and atmospheric circulation anomalies in North America. Moreover, the rather stable atmospheric response to the warm SST may explain the observed largely consistent response to the warm SST anomaly. The varying responses of the atmosphere to the cold SST indicate a strong sensitivity of the atmosphere to other forcings during the cold SST anomaly in the North Atlantic. This sensitivity could explain the varying and less stable response of the atmosphere to the cold SST during the AMO.


2017 ◽  
Vol 30 (20) ◽  
pp. 8357-8374 ◽  
Author(s):  
Xinyu Li ◽  
Riyu Lu

Abstract The Yangtze River basin (YRB), a typical East Asian monsoon region, experiences a large year-to-year variability in summer precipitation and is subject to both floods and droughts. There is a well-known seesaw relationship in precipitation between the tropical western North Pacific and the YRB, but more than half of the variance in precipitation in the YRB cannot be explained by this seesaw pattern. The authors therefore investigated other physical factors that might affect precipitation in the YRB. The results indicate that the northeasterly anomaly in the lower troposphere to the north of the YRB plays an important role in the variability in precipitation. This northeasterly anomaly is paired with the southwesterly anomaly to the south of the YRB. They both play an important role in water vapor accumulation over the YRB and intensify the meridional gradient of the equivalent potential temperature θe over the YRB by bringing dry and cool air from the north and wet air from the south. This intensified θe gradient favors convective instability and heavier rainfall in the YRB, as previous studies on mei-yu weather have indicated. Furthermore, it is found that the zonally oriented teleconnection along the Asian westerly jet and the meridional displacement of the jet can affect circulation in the lower troposphere and precipitation in the YRB. These results highlight the role of extratropical circulation anomalies and thus contribute to a more comprehensive understanding of the variability of precipitation in the YRB.


2014 ◽  
Vol 27 (17) ◽  
pp. 6423-6438 ◽  
Author(s):  
Jeffrey Shaman

Abstract An analysis and characterization of seasonal changes in the atmospheric teleconnection between ENSO and western European precipitation, as well as atmospheric conditions over the North Atlantic and Europe, are presented. Significant ENSO-associated changes in precipitation are evident during the boreal spring and fall seasons, marginal during boreal summer, and absent during boreal winter. The spring and fall precipitation anomalies are accompanied by statistically significant ENSO-related changes in large-scale fields over the North Atlantic and Europe. These seasonal teleconnections appear to be mediated by changes in upper tropospheric conditions along the coast of Europe that project down to the lower troposphere and produce onshore or offshore moisture flux anomalies, depending on the season. Some ENSO-related changes in storm activity are also evident during fall and winter. Analyses during boreal winter reveal little effect of coincident ENSO conditions on either European precipitation or upper tropospheric conditions over Europe.


2021 ◽  
Author(s):  
Chao Xu ◽  
Yaoming Ma ◽  
Jiehua Ma ◽  
Chao You ◽  
Huijun Wang

<p>Dust is a major component of atmospheric aerosol worldwide, greatly affecting regional and global climate. A dust belt can be clearly found at altitudes higher than 6 km over the downwind direction of the TP at latitudes of around 30°–40°N, crossing the Pacific Ocean and extending to North America during spring. Dust is uplifted to the midtroposphere over the source regions; then, frequent, deep, dry convection prevailing over the TP during spring can cause convective overshooting that uplifts the dust aerosols to the upper troposphere. The TP thus acts as a channel for transporting dust from the lower atmosphere to the upper troposphere, enabling the long-range zonal transport of dust around the Northern Hemisphere. Estimated spring dust mass flux (DMF) showed a significant declining trend over the TP during 2007-2019. The total spring DMF across the TP was mainly affected by DMFs over the Tarim Basin, while the spring DMF across the TP in the mid-troposphere was also connected with DMFs over the northwest Indian Peninsula and Central Asia. Inter-annual variability of spring DMF across the TP was strongly correlated with the North Atlantic winter sea surface temperature (SST) tripole. The North Atlantic winter SST tripole anomalies persist into the subsequent spring, and induce a corresponding atmosphere response. A strong positive North Atlantic winter SST tripole anomaly strengthens the upper-level westerly jets, enhancing air flow towards the TP mid-troposphere; together, these circulation patterns cause anomalous cyclonic conditions in the lower troposphere, especially over the Tarim Basin, via the eastwards propagation of a Rossby wave train. These atmospheric circulation conditions are likely to increase the frequency of dust occurrence and promote the transport of dust onto the TP.</p>


1892 ◽  
Vol 34 (872supp) ◽  
pp. 13940-13941
Author(s):  
Richard Beynon

Sign in / Sign up

Export Citation Format

Share Document