scholarly journals Influence of the North Atlantic SST Variability on the Atmospheric Circulation during the Twentieth Century

2015 ◽  
Vol 28 (4) ◽  
pp. 1396-1416 ◽  
Author(s):  
Guillaume Gastineau ◽  
Claude Frankignoul

Abstract The ocean–atmosphere coupling in the North Atlantic is investigated during the twentieth century using maximum covariance analysis of sea surface temperature (SST) and 500-hPa geopotential height analyses and performing regressions on dynamical diagnostics such as Eady growth rate, wave activity flux, and velocity potential. The North Atlantic Oscillation (NAO) generates the so-called SST anomaly tripole. A rather similar SST anomaly tripole, with the subpolar anomaly displaced to the east and a more contracted subtropical anomaly, which is referred to as the North Atlantic horseshoe pattern, in turn influences the atmosphere. In the fall and early winter, the response is NAO like and primarily results from subpolar forcing centered over the Labrador Sea and off Newfoundland. In summer, the largest atmospheric response to SST resembles the east Atlantic pattern and results from a combination of subpolar and tropical forcing. To emphasize the interannual to multidecadal variability, the same analysis is repeated after low-pass filtering. The SST influence is dominated by the Atlantic multidecadal oscillation (AMO), which also has a horseshoe shape, but with larger amplitude in the subpolar basin. A warm AMO phase leads to an atmospheric warming limited to the lower troposphere in summer, while it leads to a negative phase of the NAO in winter. The winter influence of the AMO is suggested to be primarily forced by the Atlantic SSTs in the northern subtropics. Such influence of the AMO is found in winter instead of early winter because the winter SST anomalies have a larger persistence, presumably because of SST reemergence.

Author(s):  
Carlos Garcia-Soto ◽  
Robin D. Pingree

The sea surface temperature (SST) variability of the Bay of Biscay and adjacent regions (1854–2010) has been examined in relation to the evolution of the Atlantic Multidecadal Oscillation (AMO), a major climate mode. The AMO index explains ~25% of the interannual variability of the annual SST during the last 150 years, while different indices of the North Atlantic Oscillation (NAO) explain ≤1% of the long-term record. NAO is a high frequency climate mode while AMO can modulate low frequency changes. Sixty per cent of the AMO variability is contained in periods longer than a decade. The basin-scale influence of NAO on SST over specific years (1995 to 1998) is presented and the SST anomalies explained. The period analysed represents an abrupt change in NAO and the North Atlantic circulation state as shown with altimetry and SST data. Additional atmospheric climate data over a shorter ~60 year period (1950–2008) show the influence on the Bay of Biscay SST of the East Atlantic (EA) pattern and the Scandinavia (SCA) pattern. These atmospheric teleconnections explain respectively ~25% and ~20% of the SST variability. The winter SST in the shelf-break/slope or poleward current region is analysed in relation to AMO. The poleward current shows a trend towards increasing SSTs during the last three decades as a result of the combined positive phase of AMO and global warming. The seasonality of this winter warm flow in the Iberian region is related to the autumn/winter seasonality of south-westerly (SW) winds. The SW winds are strengthened along the European shelf-break by the development of low pressure conditions in the region to the north of the Azores and therefore a negative NAO. AMO overall modulates multidecadal changes (~60% of the AMO variance). The long-term time-series of SST and SST anomalies in the Bay of Biscay show AMO-like cycles with maxima near 1870 and 1950 and minima near 1900 and 1980 indicating a period of 60–80 years during the last century and a half. Similar AMO-like variability is found in the Russell cycle of the Western English Channel (1924–1972). AMO relates at least to four mesozooplankton components of the Russell cycle: the abundance of the chaetognaths Parasagitta elegans and Parasagitta setosa (AMO −), the amount of the species Calanus helgolandicus (AMO −), the amount of the larvae of decapod crustaceans (AMO −) and the number of pilchard eggs (Sardine pilchardus; AMO +). In addition to AMO, the decadal to multidecadal (D2M) variability in the number of sunspots is analysed for the last 300 years. Several periodicities and a multi-secular linear increase are presented. There are secular minima near 1710, 1810, 1910 and 2010. The long term variability (>11 years) of the solar sunspot activity explains ~50% of the variance of the SST of the Bay of Biscay with periods longer than 11 years. AMO is finally compared with the Pacific Decadal Oscillation, the leading principal component of North Pacific SST anomalies.


2015 ◽  
Vol 28 (15) ◽  
pp. 6204-6220 ◽  
Author(s):  
Michael Veres ◽  
Qi Hu

Abstract Idealized model experiments using the NCAR CESM1.0.5 under equinox conditions are designed and performed to address two fundamental questions about the effects of the sea surface temperature (SST) variation associated with the Atlantic multidecadal oscillation (AMO) on circulation and precipitation in North America and Europe: 1) Is the observed relationship between the AMO SST and the warm-season precipitation in North America a statistical coincidence? and 2) Why is the response of negative precipitation anomaly to warm SST in the AMO fairly uniform across most of North America, whereas the positive precipitation anomaly in the cold SST rather spotty? Model experiments are done with either a warm or cold SST anomaly in an aquaplanet, a planet with idealized continents, and a planet with both idealized continents and orography. Major results show that the atmospheric response to warm SST anomaly in the North Atlantic is fairly similar among the three sets of experiments. In the lower troposphere, the response has a significant negative geopotential anomaly from the SST anomaly center to the east and a positive geopotential anomaly in upstream North America. However, the response to the cold SST anomaly changes considerably among these experiments, particularly in North America. These results provide a foundation to answer the abovementioned two questions. First, they show that there is physical connection of the AMO SST and atmospheric circulation anomalies in North America. Moreover, the rather stable atmospheric response to the warm SST may explain the observed largely consistent response to the warm SST anomaly. The varying responses of the atmosphere to the cold SST indicate a strong sensitivity of the atmosphere to other forcings during the cold SST anomaly in the North Atlantic. This sensitivity could explain the varying and less stable response of the atmosphere to the cold SST during the AMO.


2015 ◽  
Vol 12 (17) ◽  
pp. 15223-15244
Author(s):  
M. L. Breeden ◽  
G. A. McKinley

Abstract. The North Atlantic is the most intense region of ocean CO2 uptake. Here, we investigate multidecadal timescale variability of the partial pressure CO2 (pCO2) that is due to the natural carbon cycle using a regional model forced with realistic climate and pre-industrial atmospheric pCO2 for 1948–2009. Large-scale patterns of natural pCO2 variability are primarily associated with basin-averaged sea surface temperature (SST) that, in turn, is composed of two parts: the Atlantic Multidecadal Oscillation (AMO) and a long-term positive SST trend. The North Atlantic Oscillation (NAO) drives a secondary mode of variability. For the primary mode, positive AMO and the SST trend modify pCO2 with different mechanisms and spatial patterns. Warming with the positive AMO increases subpolar gyre pCO2, but there is also a significant reduction of dissolved inorganic carbon (DIC) due primarily to reduced vertical mixing. The net impact of positive AMO is to reduce pCO2 in the subpolar gyre. Through direct impacts on SST, the net impacts of positive AMO is to increase pCO2 in the subtropical gyre. From 1980 to present, long-term SST warming has amplified AMO impacts on pCO2.


2021 ◽  
Author(s):  
Priyanka Banerjee ◽  
Sreedharan Krishnakumari Satheesh ◽  
Krishnaswamy Krishna Moorthy

<p>Several studies have associated high dust years over South Asia to warming of the central or eastern equatorial Pacific Ocean (El Nino conditions) and the resulting weakening of the summer monsoon. Using satellite aerosol data for 2001-2018, we show that there has been a departure from this relation since the second decade of the 21st century with the North Atlantic Ocean emerging as a major driver of interannual variability of dust over South Asia. This change in relation coincides with the end of the global warming hiatus and a shift towards persistent positive phase of the winter North Atlantic Oscillation (NAO). Positive phase of the NAO induces cold phase of the spring/summer North Atlantic sea surface temperature (SST) tripole pattern. We show here that high dust activity during 2011-2018 is associated with positive SST anomaly over the mid-latitude North Atlantic and negative SST anomaly over the sub-tropical North Atlantic: the two southern arms of the SST tripole pattern. Interestingly, the relation between NAO and these two southern arms of the SST tripole has undergone changes in recent years, which has impacted the South Asian monsoon. The result is general drying over South Asia and an increase in the strength of the dust-carrying northwesterlies. Simulations with the Community Earth System Model (CESM) shows that SST tripole-like anomalies recorded during 2011-2018 over the North Atlantic can generate mid-latitude wave train that weakens the South Asian monsoon circulation, leads to surface high pressure anomalies and increase in dust emission and transport over northwest India and Pakistan. Most of the increase in the dust load can be attributed to enhanced transport at 800 hPa pressure level during May-June, which can lead to ~40-50% increase in dust concentrations at this level.</p>


2020 ◽  
Vol 33 (14) ◽  
pp. 6025-6045
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park ◽  
Taewook Park

AbstractThe North Atlantic (NA) basin-averaged sea surface temperature (NASST) is often used as an index to study climate variability in the NA sector. However, there is still some debate on what drives it. Based on observations and climate models, an analysis of the different influences on the NASST index and its low-pass filtered version, the Atlantic multidecadal oscillation (AMO) index, is provided. In particular, the relationships of the two indices with some of its mechanistic drivers including the Atlantic meridional overturning circulation (AMOC) are investigated. In observations, the NASST index accounts for significant SST variability over the tropical and subpolar NA. The NASST index is shown to lump together SST variability originating from different mechanisms operating on different time scales. The AMO index emphasizes the subpolar SST variability. In the climate models, the SST-anomaly pattern associated with the NASST index is similar. The AMO index, however, only represents pronounced SST variability over the extratropical NA, and this variability is significantly linked to the AMOC. There is a sensitivity of this linkage to the cold NA SST bias observed in many climate models. Models suffering from a large cold bias exhibit a relatively weak linkage between the AMOC and AMO and vice versa. Finally, the basin-averaged SST in its unfiltered form, which has been used to question a strong influence of ocean dynamics on NA SST variability, mixes together multiple types of variability occurring on different time scales and therefore underemphasizes the role of ocean dynamics in the multidecadal variability of NA SSTs.


2018 ◽  
Vol 31 (15) ◽  
pp. 5793-5810 ◽  
Author(s):  
Mi-Kyung Sung ◽  
Seon-Hwa Kim ◽  
Baek-Min Kim ◽  
Yong-Sang Choi

This study investigates the origin of the interdecadal variability in the warm Arctic and cold Eurasia (WACE) pattern, which is defined as the second empirical orthogonal function of surface air temperature (SAT) variability over the Eurasian continent in Northern Hemisphere winter, by analyzing the Twentieth Century Reanalysis dataset. While previous studies highlight recent enhancement of the WACE pattern, ascribing it to anthropogenic warming, the authors found that the WACE pattern has experienced a seemingly periodic interdecadal variation over the twentieth century. This long-term variation in the Eurasian SAT is attributable to the altered coupling between the Siberian high (SH) and intraseasonal Rossby wave emanating from the North Atlantic, as the local wave branch interacts with the SH and consequentially enhances the continental temperature perturbation. It is further identified that these atmospheric circulation changes in Eurasia are largely controlled by the decadal amplitude modulation of the climatological stationary waves over the North Atlantic region. The altered decadal mean condition of stationary wave components brings changes in local baroclinicity and storm track activity over the North Atlantic, which jointly change the intraseasonal Rossby wave generation and propagation characteristics as well. With simple stationary wave model experiments, the authors confirm how the altered mean flow condition in the North Atlantic acts as a source for the growth of the Rossby wave that leads to the change in the downstream WACE pattern.


2019 ◽  
Vol 32 (22) ◽  
pp. 7675-7695 ◽  
Author(s):  
Jie Jiang ◽  
Tianjun Zhou

Abstract Multidecadal variations in the global land monsoon were observed during the twentieth century, with an overall increasing trend from 1901 to 1955 that was followed by a decreasing trend up to 1990, but the mechanisms governing the above changes remain inconclusive. Based on the outputs of two atmospheric general circulation models (AGCMs) forced by historical sea surface temperature (SST) covering the twentieth century, supplemented with AGCM simulations forced by idealized SST anomalies representing different conditions of the North Atlantic and tropical Pacific, evidence shows that the observed changes can be partly reproduced, particularly over the Northern Hemisphere summer monsoon (NHSM) domain, demonstrating the modulation of decadal SST changes on the long-term variations in monsoon precipitation. Moisture budget analysis is performed to understand the interdecadal changes in monsoon precipitation, and the dynamic term associated with atmospheric circulation changes is found to be prominent, while the contribution of the thermodynamic term associated with humidity changes can lead to coincident wetting over the NHSM domain. The increase (decrease) in NHSM land precipitation during 1901–55 (1956–90) is associated with the strengthening (weakening) of NHSM circulation and Walker circulation. The multidecadal scale changes in atmospheric circulation are driven by SST anomalies over the North Atlantic and the Pacific. A warmer North Atlantic together with a colder eastern tropical Pacific and a warmer western subtropical Pacific can lead to a strengthened meridional gradient in mid-to-upper-tropospheric thickness and strengthened trade winds, which transport more water vapor into monsoon regions, leading to an increase in monsoon precipitation.


2005 ◽  
Vol 18 (19) ◽  
pp. 4089-4094 ◽  
Author(s):  
Claude Frankignoul ◽  
Elodie Kestenare

Abstract The Pan-Atlantic sea surface temperature (SST) anomaly pattern that was found in a previous study to have a significant impact on the North Atlantic Oscillation (NAO) in early winter seemed to reflect the nearly uncorrelated influence of a horseshoe SST anomaly in the North Atlantic and an SST anomaly in the eastern equatorial Atlantic. A lagged rotated maximum covariance analysis of a slightly longer dataset shows that the horseshoe SST anomaly influence is robust, but it deemphasizes the center of action southeast of Newfoundland, Canada. On the other hand, it suggests that the link between equatorial SST and the NAO was artificial and due both to ENSO teleconnections and the orthogonality constraint in the maximum covariance analysis.


2016 ◽  
Vol 29 (2) ◽  
pp. 659-671 ◽  
Author(s):  
Qi Hu ◽  
Michael C. Veres

Abstract This is the second part of a two-part paper that addresses deterministic roles of the sea surface temperature (SST) anomalies associated with the Atlantic multidecadal oscillation (AMO) in variations of atmospheric circulation and precipitation in the Northern Hemisphere, using a sequence of idealized model runs at the spring equinox conditions. This part focuses on the effect of the SST anomalies on North American precipitation. Major results show that, in the model setting closest to the real-world situation, a warm SST anomaly in the North Atlantic Ocean causes suppressed precipitation in central, western, and northern North America but more precipitation in the southeast. A nearly reversed pattern of precipitation anomalies develops in response to the cold SST anomaly. Further examinations of these solutions reveal that the response to the cold SST anomaly is less stable than that to the warm SST anomaly. The former is “dynamically charged” in the sense that positive eddy kinetic energy (EKE) exists over the continent. The lack of precipitation in its southeast is because of an insufficient moisture supply. In addition, the results show that the EKE of the short- (2–6 day) and medium-range (7–10 day) weather-producing processes in North America have nearly opposite signs in response to the same cold SST anomaly. These competing effects of eddies in the dynamically charged environment (elevated sensitivity to moisture) complicate the circulation and precipitation responses to the cold SST anomaly in the North Atlantic and may explain why the model results show more varying precipitation anomalies (also confirmed by statistical test results) during the cold than the warm SST anomaly, as also shown in simulations with more realistic models. Results of this study indicate a need to include the AMO in the right context with other forcings in an effort to improve understanding of interannual-to-multidecadal variations in warm season precipitation in North America.


Sign in / Sign up

Export Citation Format

Share Document