Oscillating Relationship between the East Asian Winter Monsoon and ENSO

2013 ◽  
Vol 26 (24) ◽  
pp. 9819-9838 ◽  
Author(s):  
Shengping He ◽  
Huijun Wang

Abstract This work investigates the interdecadal variations of the relationship between the El Niño–Southern Oscillation (ENSO) and the East Asian winter monsoon (EAWM), further explores possible mechanisms, and finally considers a recent switch in the ENSO–EAWM relationship. The 23-yr sliding correlation between the Niño-3.4 index and the EAWM index reveals an obvious low-frequency oscillation with a period of about 50 yr in the ENSO–EAWM relationship. Warm ENSO events during high-correlation periods are associated with an unusually weak East Asian trough, a positive phase of the North Pacific Oscillation (NPO), significant southerly wind anomalies along coastal East Asia, and warmer East Asian continent and adjacent oceans. However, there are no robust and significant anomalies in the EAWM-related circulation during low-correlation periods. Because of the southeastward shift of the Walker circulation, the area of anomalously high pressure in the western Pacific retreats south of 25°N, confining it to the region of the Philippine Sea. In this sense, the Pacific–East Asian teleconnection is not well established. Consequently, ENSO’s impact on the EAWM is suppressed. Additionally, the low-frequency oscillation of the ENSO–EAWM relationship might be attributable to the combined effect of the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation owing to their modulation on the establishment of the NPO teleconnection. The observation of two full cycles of the ENSO–EAWM relationship, a transition to negative PDO in the early 2000s and an enhancement of the Walker circulation in the late 1990s, suggests a recovery of the ENSO–EAWM relationship.

2018 ◽  
Vol 31 (7) ◽  
pp. 2871-2887 ◽  
Author(s):  
Nagio Hirota ◽  
Mai Ohta ◽  
Yousuke Yamashita ◽  
Masaaki Takahashi

This study evaluates the relative importance of diabatic heating and intraseasonal disturbances with regard to the variabilities of the East Asian jet stream (EAJS) associated with the East Asian winter monsoon (EAWM). First, strong and weak monsoon years are selected based on the EAWM index of Jhun and Lee, which is highly correlated with the monsoon northerlies between the Eurasian continent and the Pacific. The EAJS is stronger and narrower in strong monsoon years and weaker and wider in weak monsoon years. Model experiments were performed to investigate the atmospheric response to the diabatic heating and the eddy–mean flow feedback from the intraseasonal disturbances. The diabatic heating is closely related to the convective activities. The intraseasonal disturbances include high-frequency components with periods of 3–10 days and low-frequency components with periods of 10–90 days. The model results indicate that the diabatic heating plays a major role maintaining the stronger and weaker EAJS in the strong and weak monsoon years, respectively, whereas the impacts of the eddy feedback are relatively small.


2013 ◽  
Vol 21 (4) ◽  
pp. 873-878 ◽  
Author(s):  
Man Zhang ◽  
Youcun Qi ◽  
Xiao-Ming Hu

2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


Sign in / Sign up

Export Citation Format

Share Document