Roles of Intraseasonal Disturbances and Diabatic Heating in the East Asian Jet Stream Variabilities Associated with the East Asian Winter Monsoon

2018 ◽  
Vol 31 (7) ◽  
pp. 2871-2887 ◽  
Author(s):  
Nagio Hirota ◽  
Mai Ohta ◽  
Yousuke Yamashita ◽  
Masaaki Takahashi

This study evaluates the relative importance of diabatic heating and intraseasonal disturbances with regard to the variabilities of the East Asian jet stream (EAJS) associated with the East Asian winter monsoon (EAWM). First, strong and weak monsoon years are selected based on the EAWM index of Jhun and Lee, which is highly correlated with the monsoon northerlies between the Eurasian continent and the Pacific. The EAJS is stronger and narrower in strong monsoon years and weaker and wider in weak monsoon years. Model experiments were performed to investigate the atmospheric response to the diabatic heating and the eddy–mean flow feedback from the intraseasonal disturbances. The diabatic heating is closely related to the convective activities. The intraseasonal disturbances include high-frequency components with periods of 3–10 days and low-frequency components with periods of 10–90 days. The model results indicate that the diabatic heating plays a major role maintaining the stronger and weaker EAJS in the strong and weak monsoon years, respectively, whereas the impacts of the eddy feedback are relatively small.

2019 ◽  
Vol 32 (18) ◽  
pp. 6163-6175 ◽  
Author(s):  
Se-Yong Song ◽  
Sang-Wook Yeh ◽  
Jae-Heung Park

Abstract A composite analysis was conducted on the reanalysis dataset for 1979–2016, along with an idealized model experiment to show that the relationship between the East Asian jet stream (EAJS) and the East Asian winter monsoon (EAWM) is nonstationary. The relationship between EAWM and the EAJS weakened during the late 1990s. This decadal change in the EAJS–EAWM relationship was mainly due to a change in the secondary circulation across the EAJS between two contrasting periods, induced by the northward shift of the EAJS. A possible mechanism associated with the decadal change in meridional displacement of the EAJS is proposed. The enhanced convective activity in the western tropical Pacific after the late 1990s results in stronger Hadley circulation that could have contributed to the northward displacement of the Hadley circulation boundary latitude. Subsequently, this leads to the northward shift of the EAJS. Therefore, it is necessary to define a new EAJS index to account for the EAWM variability based on the change in the oceanic and atmospheric mean state across the late 1990s.


2018 ◽  
Vol 31 (21) ◽  
pp. 8985-9000 ◽  
Author(s):  
Jiapeng Miao ◽  
Tao Wang ◽  
Huijun Wang ◽  
Yali Zhu ◽  
Jianqi Sun

Observations show that the East Asian winter monsoon (EAWM) experienced an interdecadal weakening in the mid-1980s. This is evident for all members of the EAWM system (i.e., East Asian trough, upper-tropospheric jet stream, and lower-tropospheric monsoon circulation). Here, we investigate the relative contributions of natural (volcanic aerosols and solar variability) and anthropogenic [greenhouse gases (GHGs) and anthropogenic aerosols] forcings to this interdecadal weakening using multiple coupled models within phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results indicate that in the midtroposphere, the increased GHG concentrations play an important role in weakening the East Asian trough (EAT) by increasing the sea surface temperatures (SSTs) over the North Pacific. In the upper troposphere, natural external forcings contribute to the observed weakening of the meridional shear of the East Asian jet stream (EAJS) by regulating the meridional temperature gradient (MTG) over the East Asian region. In the lower troposphere, both anthropogenic and natural forcings can weaken the Siberian high during this period. Overall, based on the present analysis of the CMIP5 output, GHGs and natural forcings play key roles in shaping the observed interdecadal weakening of the EAWM during the mid-1980s. Additionally, contributions from internal variability cannot be neglected and require further investigation.


2013 ◽  
Vol 26 (24) ◽  
pp. 9819-9838 ◽  
Author(s):  
Shengping He ◽  
Huijun Wang

Abstract This work investigates the interdecadal variations of the relationship between the El Niño–Southern Oscillation (ENSO) and the East Asian winter monsoon (EAWM), further explores possible mechanisms, and finally considers a recent switch in the ENSO–EAWM relationship. The 23-yr sliding correlation between the Niño-3.4 index and the EAWM index reveals an obvious low-frequency oscillation with a period of about 50 yr in the ENSO–EAWM relationship. Warm ENSO events during high-correlation periods are associated with an unusually weak East Asian trough, a positive phase of the North Pacific Oscillation (NPO), significant southerly wind anomalies along coastal East Asia, and warmer East Asian continent and adjacent oceans. However, there are no robust and significant anomalies in the EAWM-related circulation during low-correlation periods. Because of the southeastward shift of the Walker circulation, the area of anomalously high pressure in the western Pacific retreats south of 25°N, confining it to the region of the Philippine Sea. In this sense, the Pacific–East Asian teleconnection is not well established. Consequently, ENSO’s impact on the EAWM is suppressed. Additionally, the low-frequency oscillation of the ENSO–EAWM relationship might be attributable to the combined effect of the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation owing to their modulation on the establishment of the NPO teleconnection. The observation of two full cycles of the ENSO–EAWM relationship, a transition to negative PDO in the early 2000s and an enhancement of the Walker circulation in the late 1990s, suggests a recovery of the ENSO–EAWM relationship.


2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


Sign in / Sign up

Export Citation Format

Share Document