scholarly journals CMIP5 Projections of Arctic Amplification, of the North American/North Atlantic Circulation, and of Their Relationship

2015 ◽  
Vol 28 (13) ◽  
pp. 5254-5271 ◽  
Author(s):  
Elizabeth A. Barnes ◽  
Lorenzo M. Polvani

Abstract Recent studies have hypothesized that Arctic amplification, the enhanced warming of the Arctic region compared to the rest of the globe, will cause changes in midlatitude weather over the twenty-first century. This study exploits the recently completed phase 5 of the Coupled Model Intercomparison Project (CMIP5) and examines 27 state-of-the-art climate models to determine if their projected changes in the midlatitude circulation are consistent with the hypothesized impact of Arctic amplification over North America and the North Atlantic. Under the largest future greenhouse forcing (RCP8.5), it is found that every model, in every season, exhibits Arctic amplification by 2100. At the same time, the projected circulation responses are either opposite in sign to those hypothesized or too widely spread among the models to discern any robust change. However, in a few seasons and for some of the circulation metrics examined, correlations are found between the model spread in Arctic amplification and the model spread in the projected circulation changes. Therefore, while the CMIP5 models offer some evidence that future Arctic warming may be able to modulate some aspects of the midlatitude circulation response in some seasons, the analysis herein leads to the conclusion that the net circulation response in the future is unlikely to be determined solely—or even primarily—by Arctic warming according to the sequence of events recently hypothesized.

2013 ◽  
Vol 26 (15) ◽  
pp. 5379-5396 ◽  
Author(s):  
Giuseppe Zappa ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges

Abstract The ability of the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate North Atlantic extratropical cyclones in winter [December–February (DJF)] and summer [June–August (JJA)] is investigated in detail. Cyclones are identified as maxima in T42 vorticity at 850 hPa and their propagation is tracked using an objective feature-tracking algorithm. By comparing the historical CMIP5 simulations (1976–2005) and the ECMWF Interim Re-Analysis (ERA-Interim; 1979–2008), the authors find that systematic biases affect the number and intensity of North Atlantic cyclones in CMIP5 models. In DJF, the North Atlantic storm track tends to be either too zonal or displaced southward, thus leading to too few and weak cyclones over the Norwegian Sea and too many cyclones in central Europe. In JJA, the position of the North Atlantic storm track is generally well captured but some CMIP5 models underestimate the total number of cyclones. The dynamical intensity of cyclones, as measured by either T42 vorticity at 850 hPa or mean sea level pressure, is too weak in both DJF and JJA. The intensity bias has a hemispheric character, and it cannot be simply attributed to the representation of the North Atlantic large-scale atmospheric state. Despite these biases, the representation of Northern Hemisphere (NH) storm tracks has improved since CMIP3 and some CMIP5 models are able of representing well both the number and the intensity of North Atlantic cyclones. In particular, some of the higher-atmospheric-resolution models tend to have a better representation of the tilt of the North Atlantic storm track and of the intensity of cyclones in DJF.


2021 ◽  
Author(s):  
Erik T. Smith ◽  
Scott Sheridan

Abstract Historical and future simulated temperature data from five climate models in the Coupled Model Intercomparing Project Phase 6 (CMIP6) are used to understand how climate change might alter cold air outbreaks (CAOs) in the future. Three different Shared Socioeconomic Pathways (SSPs), SSP 1 – 2.6, SSP 2 – 4.5, and SSP 5 – 8.5 are examined to identify potential fluctuations in CAOs across the globe between 2015 and 2054. Though CAOs may remain persistent or even increase in some regions through 2040, all five climate models show CAOs disappearing by 2054 based on current climate percentiles. Climate models were able to accurately simulate the spatial distribution and trends of historical CAOs, but there were large errors in the simulated interannual frequency of CAOs in the North Atlantic and North Pacific. Fluctuations in complex processes, such as Atlantic Meridional Overturning Circulation, may be contributing to each model’s inability to simulate historical CAOs in these regions.


2009 ◽  
Vol 22 (3) ◽  
pp. 486-498 ◽  
Author(s):  
Willem P. Sijp ◽  
Matthew H. England

Abstract Increasing the value of along-isopycnal diffusivity in a coupled model is shown to lead to enhanced stability of North Atlantic Deep Water (NADW) formation with respect to freshwater (FW) perturbations. This is because the North Atlantic (NA) surface salinity budget is dominated by upward salt fluxes resulting from winter convection for low values of along-isopycnal diffusivity, whereas along-isopycnal diffusion exerts a strong control on NA surface salinity at higher diffusivity values. Shutdown of wintertime convection in response to a FW pulse allows the development of a halocline responsible for the suppression of deep sinking. In contrast to convection, isopycnal salt diffusion proves a more robust mechanism for preventing the formation of a halocline, as surface freshening leads only to a flattening of isopycnals, leaving at least some diffusive removal of anomalous surface FW in place. As a result, multiple equilibria are altogether absent for sufficiently high values of isopycnal diffusivity. Furthermore, the surface salinity budget of the North Pacific is also dominated by along-isopycnal diffusion when diffusivity values are sufficiently high, leading to a breakdown of the permanent halocline there and the associated onset of deep-water formation.


2018 ◽  
Vol 31 (13) ◽  
pp. 5165-5188 ◽  
Author(s):  
He Wang ◽  
Sonya Legg ◽  
Robert Hallberg

This study examines the relative roles of the Arctic freshwater exported via different pathways on deep convection in the North Atlantic and the Atlantic meridional overturning circulation (AMOC). Deep water feeding the lower branch of the AMOC is formed in several North Atlantic marginal seas, including the Labrador Sea, Irminger Sea, and the Nordic seas, where deep convection can potentially be inhibited by surface freshwater exported from the Arctic. The sensitivity of the AMOC and North Atlantic to two major freshwater pathways on either side of Greenland is studied using numerical experiments. Freshwater export is rerouted in global coupled climate models by blocking and expanding the channels along the two routes. The sensitivity experiments are performed in two sets of models (CM2G and CM2M) with different control simulation climatology for comparison. Freshwater via the route east of Greenland is found to have a larger direct impact on Labrador Sea convection. In response to the changes of freshwater route, North Atlantic convection outside of the Labrador Sea changes in the opposite sense to the Labrador Sea. The response of the AMOC is found to be sensitive to both the model formulation and mean-state climate.


2021 ◽  
Author(s):  
Marilena Oltmanns ◽  
N. Penny Holliday ◽  
James Screen ◽  
D. Gwyn Evans ◽  
Simon A. Josey ◽  
...  

<p>Recent decades have been characterised by amplified Arctic warming and increased occurrence of extreme weather events in the North Atlantic region. While earlier studies noticed statistical links between high-latitude warming and mid-latitude weather extremes, the underlying dynamical connections remained elusive. Combining different data products, I will demonstrate a new mechanism linking Arctic ice losses with cold anomalies and storms in the subpolar region in winter, and with heat waves and droughts over Europe summer. Considering feedbacks of the identified mechanism on the Arctic Ocean circulation, I will further present new support for the potential of Arctic warming to trigger a rapid change in climate.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Marika M. Holland ◽  
Laura Landrum

Under rising atmospheric greenhouse gas concentrations, the Arctic exhibits amplified warming relative to the globe. This Arctic amplification is a defining feature of global warming. However, the Arctic is also home to large internal variability, which can make the detection of a forced climate response difficult. Here we use results from seven model large ensembles, which have different rates of Arctic warming and sea ice loss, to assess the time of emergence of anthropogenically-forced Arctic amplification. We find that this time of emergence occurs at the turn of the century in all models, ranging across the models by a decade from 1994–2005. We also assess transient changes in this amplified signal across the 21st century and beyond. Over the 21st century, the projections indicate that the maximum Arctic warming will transition from fall to winter due to sea ice reductions that extend further into the fall. Additionally, the magnitude of the annual amplification signal declines over the 21st century associated in part with a weakening albedo feedback strength. In a simulation that extends to the 23rd century, we find that as sea ice cover is completely lost, there is little further reduction in the surface albedo and Arctic amplification saturates at a level that is reduced from its 21st century value.


2020 ◽  
Vol 33 (18) ◽  
pp. 8003-8023
Author(s):  
Danqing Huang ◽  
Aiguo Dai ◽  
Jian Zhu

AbstractAfter a CO2 increase, whether the early transient and final equilibrium climate change patterns are similar has major implications. Here, we analyze long-term simulations from multiple climate models under increased CO2, together with the extended simulations from CMIP5, to compare the transient and equilibrium climate change patterns under different forcing scenarios. Results show that the normalized warming patterns (per 1 K of global warming) are broadly similar among different forcing scenarios (including abrupt 2 × CO2, 4 × CO2, and 1% CO2 increase per year) and during different time periods, except for the first 50 years or so when warming is weaker over the North Atlantic and Southern Ocean but stronger over most continents. During the first 200 years, this consistency is stronger over land than over ocean, but is lower in midlatitudes than other regions. Normalized precipitation change patterns are also similar, albeit to a lesser degree, among different forcing scenarios and across different time periods, although noticeable differences exist during the first few hundred years with smaller increases over the tropical Pacific. Precipitation over many subtropical oceans and land areas decreases consistently under different forcing scenarios and over all time periods. In particular, the transient and near-equilibrium change patterns for both surface air temperature and precipitation are similar over most of the globe, except for the North Atlantic warming hole, which is mainly a transient feature. The Arctic amplification and land–ocean warming contrast are largest during the first 100–200 years after CO2 quadrupling but they still exist in the equilibrium response.


2021 ◽  
Author(s):  
Mareike Schuster ◽  
Uwe Ulbrich

<p>Windstorms are considered the most devastating natural peril in many regions around the globe. For insurance associations in Europe for example, the damages generated by windstorms make up to about 90% of the claims in the category of natural hazards. The interannual variability of windstorms can be quite strong and thus research has recently focused on this topic.</p><p>However, storm risk and its changes under anthropogenically induced climate change are so far rather little discussed in literature. Thus, there are still large uncertainties about how climate change will affect the extratropical circulation. CMIP5 models showed at times opposing signals regarding number and strength of windstorm generating cyclones and storm tracks. In more detail, the latest IPCC AR5 states that substantial uncertainty and low confidence remains in projecting changes in NH storm tracks, especially for the North Atlantic basin.</p><p>With the lately released CMIP6 simulations, providing model output of increased spatial and temporal resolution, there is potential for new insights and enhanced confidence regarding future trends of storminess.</p><p>In our study, we assess characteristics and trends of windstorm diagnostics in an ensemble of the latest CMIP6 climate scenario simulations, with a focus to the North Atlantic basin and winterstorms affecting Europe.</p><p>In the CMIP6 model ensemble the trends of winter windstorm frequencies appear to be overall weaker in an anthropogenically changed climate than in the preceding CMIP5 scenarios; yet, first results indicate that they are somewhat more consistent amongst models. All CMIP6 models exhibit a windstorm frequency increase locally confined over the Arctic, while in the mid and high latitudes a wide-ranging decrease of windstorm activity is simulated. In our study we will also assess what this entails for characteristics like life time, intensity and size.</p>


2021 ◽  
Author(s):  
Mika Rantanen ◽  
Alexey Karpechko ◽  
Antti Lipponen ◽  
Kalle Nordling ◽  
Otto Hyvärinen ◽  
...  

Abstract In recent decades, the warming in the Arctic has been much faster than in the rest of the world, a phenomenon known as Arctic amplification (AA). Numerous studies report that Arctic is warming either twice, more than twice, or even three times as fast as the globe on average. However, the lack of consensus of AA definition precludes its precise quantification. Here we show, by using several observational datasets which cover the Arctic region and adopting a simple definition of AA, that during the last 40 years the Arctic has been warming almost four times faster than the globe as a whole, which is a higher ratio than generally reported in literature. Furthermore, we compared the observed AA ratio to the ratio simulated by state-of-the-art climate models, and show that the models largely underestimate the present AA, a finding that is not very sensitive to the exact definition of AA. The underestimation of AA by climate models most likely results from their inability to realistically simulate feedback mechanisms between sea ice melt and atmospheric temperatures. Our results imply that the underestimated AA leads to biased projections of climate change both in the Arctic and mid-latitudes.


2019 ◽  
Vol 32 (16) ◽  
pp. 5235-5250 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Chen ◽  
Renguang Wu ◽  
Wen Zhou ◽  
...  

AbstractThe wintertime Arctic Oscillation (AO) pattern in phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models displays notable differences from the reanalysis. The North Pacific center of the AO pattern is larger in the ensemble mean of 27 models than in the reanalysis, and the magnitude of the North Pacific center of the AO pattern varies largely among the models. This study investigates the plausible sources of the diversity of the AO pattern in the models. Analysis indicates that the amplitude of the North Pacific center is associated with the coupling between the North Pacific and North Atlantic, which in turn is primarily modulated by the strength of the stratospheric polar vortex. A comparative analysis is conducted for the strong polar vortex (SPV) and weak polar vortex (WPV) models. It reveals that a stronger stratospheric polar vortex induces more planetary waves to reflect from the North Pacific to the North Atlantic and more wave activity fluxes to propagate from the North Pacific to the North Atlantic in the SPV models than in the WPV models. Thus, the coupling of atmospheric circulation between the North Pacific and North Atlantic is stronger in the SPV models, which facilitates more North Pacific variability to be involved in the AO variability and induces a stronger North Pacific center in the AO pattern. The increase in vertical resolution may improve the simulation of the stratospheric polar vortex and thereby reduces the model biases in the North Pacific–North Atlantic coupling and thereby the amplitude of the North Pacific center of the AO pattern in models.


Sign in / Sign up

Export Citation Format

Share Document