scholarly journals Tropical Temperature and Precipitation Responses to Large Volcanic Eruptions: Observations and AMIP5 Simulations

2016 ◽  
Vol 29 (4) ◽  
pp. 1325-1338 ◽  
Author(s):  
A. Meyer ◽  
D. Folini ◽  
U. Lohmann ◽  
T. Peter

Abstract Tropical land mean surface air temperature and precipitation responses to the eruptions of El Chichón in 1982 and Pinatubo in 1991, as simulated by the atmosphere-only GCMs (AMIP) in phase 5 of the Coupled Model Intercomparison Project (CMIP5), are examined and compared to three observational datasets. The El Niño–Southern Oscillation (ENSO) signal was statistically separated from the volcanic signal in all time series. Focusing on the ENSO signal, it was found that the 17 investigated AMIP models successfully simulate the observed 4-month delay in the temperature responses to the ENSO phase but simulate somewhat too-fast precipitation responses during the El Niño onset stage. The observed correlation between temperature and ENSO phase (correlation coefficient of 0.75) is generally captured well by the models (simulated correlation of 0.71 and ensemble means of 0.61–0.83). For precipitation, mean correlations with the ENSO phase are −0.59 for observations and −0.53 for the models, with individual ensemble members having correlations as low as −0.26. Observed, ENSO-removed tropical land temperature and precipitation decrease by about 0.35 K and 0.25 mm day−1 after the Pinatubo eruption, while no significant decrease in either variable was observed after El Chichón. The AMIP models generally capture this behavior despite a tendency to overestimate the precipitation response to El Chichón. Scatter is substantial, both across models and across ensemble members of individual models. Natural variability thus may still play a prominent role despite the strong volcanic forcing.

Science ◽  
2020 ◽  
Vol 367 (6485) ◽  
pp. 1477-1481 ◽  
Author(s):  
Sylvia G. Dee ◽  
Kim M. Cobb ◽  
Julien Emile-Geay ◽  
Toby R. Ault ◽  
R. Lawrence Edwards ◽  
...  

The El Niño–Southern Oscillation (ENSO) shapes global climate patterns yet its sensitivity to external climate forcing remains uncertain. Modeling studies suggest that ENSO is sensitive to sulfate aerosol forcing associated with explosive volcanism but observational support for this effect remains ambiguous. Here, we used absolutely dated fossil corals from the central tropical Pacific to gauge ENSO’s response to large volcanic eruptions of the last millennium. Superposed epoch analysis reveals a weak tendency for an El Niño–like response in the year after an eruption, but this response is not statistically significant, nor does it appear after the outsized 1257 Samalas eruption. Our results suggest that those models showing a strong ENSO response to volcanic forcing may overestimate the size of the forced response relative to natural ENSO variability.


2006 ◽  
Vol 19 (12) ◽  
pp. 2984-2994 ◽  
Author(s):  
James K. Angell

Abstract The mean monthly polar stereographic map analyses of the Free University of Berlin terminated at the end of 2001. This paper summarizes the changes in size of the 300-mb north circumpolar vortex, and quadrants, for the full period of record, 1963–2001, where the size has been defined by planimetering the area poleward of contours in the jet stream core. A contracted vortex has tended to be a deep vortex in winter but a shallow vortex in summer. During 1963–2001 there was a statistically significant decrease in vortex size of 1.5% per decade, the decrease in size of Western Hemisphere quadrants being twice that of Eastern Hemisphere quadrants. A significant increase in Arctic Oscillation (AO) index accompanies the significant decrease in vortex size, but since the vortex contracts appreciably in all four seasons, whereas the positive trend in the AO index is mainly in winter, the vortex cannot serve as a proxy for the AO index. The evidence for vortex contraction at the time of the 1976–77 regime shift is not conclusive, but there is good evidence for a 6% increase in vortex size due to the 1991 Pinatubo eruption. There is little change in vortex size following the 1982 El Chichon eruption, however. Because on average there is a significant 4% contraction of the vortex following an El Niño, it is proposed that the vortex expansion to be expected following the 1982 El Chichon eruption has been contravened by the contraction following the strong 1982–83 El Niño. There is little relation between vortex size and phase of the quasi-biennial oscillation (QBO), and the evidence for a contracted vortex near 11-yr sunspot maxima is tenuous because the vortex record extends through only three full sunspot cycles. There is a highly significant tendency for opposite vortex quadrants 0°–90°E and 90°W–180° to vary in size together, indicating either a pulsating polar vortex or the propagation of planetary wavenumber 2.


2017 ◽  
Vol 114 (8) ◽  
pp. 1822-1826 ◽  
Author(s):  
Samantha Stevenson ◽  
John T. Fasullo ◽  
Bette L. Otto-Bliesner ◽  
Robert A. Tomas ◽  
Chaochao Gao

The response of the El Niño/Southern Oscillation (ENSO) to tropical volcanic eruptions has important worldwide implications, but remains poorly constrained. Paleoclimate records suggest an “El Niño-like” warming 1 year following major eruptions [Adams JB, Mann ME, Ammann CM (2003)Nature426:274–278] and “La Niña-like” cooling within the eruption year [Li J, et al. (2013)Nat Clim Chang3:822–826]. However, climate models currently cannot capture all these responses. Many eruption characteristics are poorly constrained, which may contribute to uncertainties in model solutions—for example, the season of eruption occurrence is often unknown and assigned arbitrarily. Here we isolate the effect of eruption season using experiments with the Community Earth System Model (CESM), varying the starting month of two large tropical eruptions. The eruption-year atmospheric circulation response is strongly seasonally dependent, with effects on European winter warming, the Intertropical Convergence Zone, and the southeast Asian monsoon. This creates substantial variations in eruption-year hydroclimate patterns, which do sometimes exhibit La Niña-like features as in the proxy record. However, eruption-year equatorial Pacific cooling is not driven by La Niña dynamics, but strictly by transient radiative cooling. In contrast, equatorial warming the following year occurs for all starting months and operates dynamically like El Niño. Proxy reconstructions confirm these results: eruption-year cooling is insignificant, whereas warming in the following year is more robust. This implies that accounting for the event season may be necessary to describe the initial response to volcanic eruptions and that climate models may be more accurately simulating volcanic influences than previously thought.


2012 ◽  
Vol 12 (5) ◽  
pp. 13201-13236 ◽  
Author(s):  
H. E. Rieder ◽  
L. Frossard ◽  
M. Ribatet ◽  
J. Staehelin ◽  
J. A. Maeder ◽  
...  

Abstract. We present the first spatial analysis of "fingerprints" of the El Niño/Southern Oscillation (ENSO) and atmospheric aerosol load after major volcanic eruptions (El Chichón and Mt. Pinatubo) in extreme low and high (termed ELOs and EHOs, respectively) and mean values of total ozone for the northern and southern mid-latitudes (defined as the region between 30° and 60° north and south, respectively). Significant influence on ozone extremes was found for the warm ENSO phase in both hemispheres during spring, especially towards low latitudes, indicating the enhanced ozone transport from the tropics to the extra-tropics. Further, the results confirm findings of recent work on the connection between the ENSO phase and the strength and extent of the southern ozone "collar". For the volcanic eruptions the analysis confirms findings of earlier studies for the northern mid-latitudes and gives new insights for the Southern Hemisphere. The results provide evidence that the negative effect of the eruption of El Chichón might be partly compensated by a strong warm ENSO phase in 1982–83 at southern mid-latitudes. The strong west-east gradient in the coefficient estimates for the Mt. Pinatubo eruption and the analysis of the relationship between the AAO and ENSO phase, the extent and the position of the southern ozone "collar" and the polar vortex structure provide clear evidence for a dynamical "masking" of the volcanic signal at southern mid-latitudes. The paper also analyses the contribution of atmospheric dynamics and chemistry to long-term total ozone changes. Here, quite heterogeneous results have been found on spatial scales. In general the results show that EESC and the 11-yr solar cycle can be identified as major contributors to long-term ozone changes. However, a strong contribution of dynamical features (El Niño/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Antarctic Oscillation (AAO), Quasi-Biennial Oscillation (QBO)) to ozone variability and trends is found at a regional level. For the QBO (at 30 and 50 hPa), strong influence on total ozone variability and trends is found over large parts of the northern and southern mid-latitudes, especially towards equatorial latitudes. Strong influence of ENSO is found over the Northern and Southern Pacific, Central Europe and central southern mid-latitudes. For the NAO, strong influence on column ozone is found over Labrador/Greenland, the Eastern United States, the Euro-Atlantic Sector and Central Europe. For the NAO's southern counterpart, the AAO, strong influence on ozone variability and long-term changes is found at lower southern mid-latitudes, including the southern parts of South America and the Antarctic Peninsula, and central southern mid-latitudes.


Irriga ◽  
2015 ◽  
Vol 20 (2) ◽  
pp. 371-387 ◽  
Author(s):  
Givanildo De Gois ◽  
Rafael Coll Delgado ◽  
José Francisco De Oliveira Júnior

Foi avaliado o desempenho dos modelos esférico, exponencial e gaussiano na interpolação espacial do índice SPI em episódios de El Niño forte no Tocantins (TO), Brasil. O método utilizado foi a Krigagem Ordinária (KO). Os eventos foram 1982-83, 1990-93 e 1997-98. O Estado do TO foi dividido em duas regiões: ocidental e oriental. Foi aplicada à estatística descritiva baseado em índices existentes na literatura. Os modelos esférico e exponencial são similares quanto à magnitude dos erros estatísticos e com desempenho considerado ótimo para os ciclos iniciais de 1982-83 e 1990-93, a exceção foi o ciclo 1997-98, seguido do modelo gaussiano com desempenho abaixo em comparação aos demais. Ambos os modelos esférico e exponencial identificam espacialmente os eventos de seca em ambas as regiões no TO e, principalmente nos anos iniciais dos ciclos dos El Niños forte. Isso se deve aos efeitos de grande escala associado ao aumento dos aerossóis devido às erupções do El Chichón (1982) e Pinatubo (1991), seguido dos padrões de precipitação para os El Niños os quais o gradiente interbacias do Pacífico e Atlântico se forma em sua fase inicial, apresentam anomalias mais acentuadas, do que os El Niños com o gradiente interbacias na sua fase de decaimento.


Sign in / Sign up

Export Citation Format

Share Document