Changes in the 300-mb North Circumpolar Vortex, 1963–2001

2006 ◽  
Vol 19 (12) ◽  
pp. 2984-2994 ◽  
Author(s):  
James K. Angell

Abstract The mean monthly polar stereographic map analyses of the Free University of Berlin terminated at the end of 2001. This paper summarizes the changes in size of the 300-mb north circumpolar vortex, and quadrants, for the full period of record, 1963–2001, where the size has been defined by planimetering the area poleward of contours in the jet stream core. A contracted vortex has tended to be a deep vortex in winter but a shallow vortex in summer. During 1963–2001 there was a statistically significant decrease in vortex size of 1.5% per decade, the decrease in size of Western Hemisphere quadrants being twice that of Eastern Hemisphere quadrants. A significant increase in Arctic Oscillation (AO) index accompanies the significant decrease in vortex size, but since the vortex contracts appreciably in all four seasons, whereas the positive trend in the AO index is mainly in winter, the vortex cannot serve as a proxy for the AO index. The evidence for vortex contraction at the time of the 1976–77 regime shift is not conclusive, but there is good evidence for a 6% increase in vortex size due to the 1991 Pinatubo eruption. There is little change in vortex size following the 1982 El Chichon eruption, however. Because on average there is a significant 4% contraction of the vortex following an El Niño, it is proposed that the vortex expansion to be expected following the 1982 El Chichon eruption has been contravened by the contraction following the strong 1982–83 El Niño. There is little relation between vortex size and phase of the quasi-biennial oscillation (QBO), and the evidence for a contracted vortex near 11-yr sunspot maxima is tenuous because the vortex record extends through only three full sunspot cycles. There is a highly significant tendency for opposite vortex quadrants 0°–90°E and 90°W–180° to vary in size together, indicating either a pulsating polar vortex or the propagation of planetary wavenumber 2.

2016 ◽  
Vol 29 (4) ◽  
pp. 1325-1338 ◽  
Author(s):  
A. Meyer ◽  
D. Folini ◽  
U. Lohmann ◽  
T. Peter

Abstract Tropical land mean surface air temperature and precipitation responses to the eruptions of El Chichón in 1982 and Pinatubo in 1991, as simulated by the atmosphere-only GCMs (AMIP) in phase 5 of the Coupled Model Intercomparison Project (CMIP5), are examined and compared to three observational datasets. The El Niño–Southern Oscillation (ENSO) signal was statistically separated from the volcanic signal in all time series. Focusing on the ENSO signal, it was found that the 17 investigated AMIP models successfully simulate the observed 4-month delay in the temperature responses to the ENSO phase but simulate somewhat too-fast precipitation responses during the El Niño onset stage. The observed correlation between temperature and ENSO phase (correlation coefficient of 0.75) is generally captured well by the models (simulated correlation of 0.71 and ensemble means of 0.61–0.83). For precipitation, mean correlations with the ENSO phase are −0.59 for observations and −0.53 for the models, with individual ensemble members having correlations as low as −0.26. Observed, ENSO-removed tropical land temperature and precipitation decrease by about 0.35 K and 0.25 mm day−1 after the Pinatubo eruption, while no significant decrease in either variable was observed after El Chichón. The AMIP models generally capture this behavior despite a tendency to overestimate the precipitation response to El Chichón. Scatter is substantial, both across models and across ensemble members of individual models. Natural variability thus may still play a prominent role despite the strong volcanic forcing.


Irriga ◽  
2015 ◽  
Vol 20 (2) ◽  
pp. 371-387 ◽  
Author(s):  
Givanildo De Gois ◽  
Rafael Coll Delgado ◽  
José Francisco De Oliveira Júnior

Foi avaliado o desempenho dos modelos esférico, exponencial e gaussiano na interpolação espacial do índice SPI em episódios de El Niño forte no Tocantins (TO), Brasil. O método utilizado foi a Krigagem Ordinária (KO). Os eventos foram 1982-83, 1990-93 e 1997-98. O Estado do TO foi dividido em duas regiões: ocidental e oriental. Foi aplicada à estatística descritiva baseado em índices existentes na literatura. Os modelos esférico e exponencial são similares quanto à magnitude dos erros estatísticos e com desempenho considerado ótimo para os ciclos iniciais de 1982-83 e 1990-93, a exceção foi o ciclo 1997-98, seguido do modelo gaussiano com desempenho abaixo em comparação aos demais. Ambos os modelos esférico e exponencial identificam espacialmente os eventos de seca em ambas as regiões no TO e, principalmente nos anos iniciais dos ciclos dos El Niños forte. Isso se deve aos efeitos de grande escala associado ao aumento dos aerossóis devido às erupções do El Chichón (1982) e Pinatubo (1991), seguido dos padrões de precipitação para os El Niños os quais o gradiente interbacias do Pacífico e Atlântico se forma em sua fase inicial, apresentam anomalias mais acentuadas, do que os El Niños com o gradiente interbacias na sua fase de decaimento.


1995 ◽  
Vol 22 (17) ◽  
pp. 2369-2372 ◽  
Author(s):  
Alan Robock ◽  
Karl E. Taylor ◽  
Georgiy L. Stenchikov ◽  
Yuhe Liu
Keyword(s):  
El Niño ◽  
El Nino ◽  

2016 ◽  
Author(s):  
Cristen Adams ◽  
Adam E. Bourassa ◽  
Chris A. McLinden ◽  
Chris E. Sioris ◽  
Thomas von Clarmann ◽  
...  

Abstract. Following the large volcanic eruptions of Pinatubo in 1991 and El Chichón in 1982, decreases in stratospheric NO2 associated with enhanced aerosol were observed. The Optical Spectrograph and InfraRed Imaging Spectrometer (OSIRIS) likewise measured widespread enhancements of stratospheric aerosol following seven volcanic eruptions between 2002 and 2014, although the magnitudes of these eruptions were all much smaller than the Pinatubo and El Chichón eruptions. In order to isolate and quantify the relationship between volcanic aerosol and NO2, NO2 anomalies were calculated using measurements from OSIRIS and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). In the tropics, variability due to the quasi-biennial oscillation was subtracted from the timeseries. OSIRIS profile measurements indicate that the strongest relationships between NO2 and volcanic aerosol extinction were for the layer ~ 3–7 km above the tropopause, where OSIRIS stratospheric NO2 partial columns for ~ 3–7 km above the tropopause were found to be smaller than baseline levels during these aerosol enhancements by up to ~ 60 % with typical Pearson correlation coefficients of R ~ −0.7. MIPAS also observed decreases in NO2 partial columns during periods of affected by volcanic aerosol, with percent differences of up to ~ 25 %. An even stronger relationship was observed between OSIRIS aerosol optical depth and MIPAS N2O5 partial columns, with R ~ −0.9, although no link with MIPAS HNO3 was observed. The variation of OSIRIS NO2 with increasing aerosol was found to be quantitatively consistent with simulations from a photochemical box model in terms of both magnitude and degree of non-linearity.


2011 ◽  
Vol 11 (3) ◽  
pp. 9743-9767 ◽  
Author(s):  
M. M. Hurwitz ◽  
I.-S. Song ◽  
L. D. Oman ◽  
P. A. Newman ◽  
A. M. Molod ◽  
...  

Abstract. A new formulation of the Goddard Earth Observing System Chemistry-Climate Model, Version 2 (GEOS V2 CCM), with an improved general circulation model and an internally generated quasi-biennial oscillation (QBO), is used to investigate the response of the Antarctic stratosphere to (1) warm pool El Niño (WPEN) events and (2) the sensitivity of this response to the phase of the QBO. Two 50-yr time-slice simulations are forced by repeating annual cycles of sea surface temperatures and sea ice concentrations composited from observed WPEN and neutral ENSO (ENSON) events. In these simulations, greenhouse gas and ozone-depleting substance concentrations represent the present-day climate. The modelled responses to WPEN, and to the phase of the QBO during WPEN, are compared with NASA's Modern Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis. WPEN events enhance poleward planetary wave activity in the central South Pacific during austral spring, leading to relative warming of the Antarctic lower stratosphere in November/December. During the easterly phase of the QBO (QBO-E), the GEOS V2 CCM reproduces the observed 3–5 K warming of the polar region at 50 hPa, in the WPEN simulation relative to ENSON. In the recent past, the response to WPEN events was sensitive to the phase of the QBO: the enhancement in planetary wave driving and the lower stratospheric warming signal were mainly associated with WPEN events coincident with QBO-E. In the GEOS V2 CCM, however, the Antarctic response to WPEN events is insensitive to the phase of the QBO: the modelled response is always easterly QBO-like. OLR, streamfunction and Rossby wave energy diagnostics are used to show that the modelled QBO does not extend far enough into the lower stratosphere and upper troposphere to modulate convection and thus planetary wave activity in the south central Pacific.


2018 ◽  
Author(s):  
Leslie M. Hartten ◽  
Christopher J. Cox ◽  
Paul E. Johnston ◽  
Daniel E. Wolfe ◽  
Scott Abbott ◽  
...  

Abstract. As the 2015/2016 El Niño was gathering strength in late 2015, scientists at the Earth System Research Laboratory's Physical Sciences Division proposed and led the implementation of NOAA's El Niño Rapid Response (ENRR) Field Campaign. ENRR observations included wind and thermodynamic profiles of the atmosphere over the near-equatorial east-central Pacific Ocean, many of which were collected from two field sites and transmitted in near-real time for inclusion in global forecasting models. From 26 January to 28 March 2016, twice-daily rawinsonde observations were made from Kiritimati (pronounced Christmas) Island (2.0°N, 157.4°E; call sign CXENRR). From 16 February to 16 March 2016, three to eight radiosondes were launched each day from the NOAA Ship Ronald H. Brown (allocated call sign WTEC) as it travelled southeast from Hawaii to service Tropical Atmosphere Ocean (TAO) buoys along longitudes 140°W and 125°W and then north to San Diego, California. Both the rapid and the remote nature of these deployments created particular difficulties in collecting and disseminating the soundings; these are described together with the methods used to reprocess the data after the field campaign finished. The reprocessed and lightly quality-controlled data have been put into an easy-to-read text format, qualifying them to be termed Level 2 soundings. They are archived and freely available for public access at NOAA's National Centers for Environmental Information (NCEI) in the form of two separate data sets: one consisting of 125 soundings from Kiritimati Island (doi:10.7289/V55Q4T5K), the other of 193 soundings from the NOAA Ship Ronald H. Brown (doi:10.7289/V5X63K15). Of the Kiritimati soundings, 94 % reached the tropopause and 88 % reached 40 hPa, while 89 % of the ship's soundings reached the tropopause and 87 % reached 40 hPa. The soundings captured the repeated advance and retreat of the ITCZ at Kiritimati, a variety of marine tropospheric environments encountered by the ship, and lower-stratospheric features of the 2015–2016 QBO (quasi-biennial oscillation), all providing a rich view of the local atmosphere's response to the east-central Pacific's extremely warm waters during the 2015/16 El Niño.


Sign in / Sign up

Export Citation Format

Share Document